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ABSTRACT
We introduce the idea of considering computer supported
collaborative work as a complex adaptive system (CAS). In
other disciplines, such as physics, biology and ecology, the
idea of a CAS has proven useful in explaining a wide va-
riety of phenomena. We define a CAS and then describe
how CSCW fits that definition. We demonstrate that the
concepts in CAS theory can be applied to help understand
computer supported collaboration and provide examples of
catastrophe and chaos in physics showing how they can be
paralleled in CSCW. The implications of the application of
CAS theory to CSCW include greater insight into the com-
puter supported collaborative process and inform both eval-
uation methodology and design of applications.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation (e.g.,
HCI)]: Group and Organization Interfaces – Collaborative
computing, Computer-supported cooperative work, Evalua-
tion/methodology, Theory and models

General Terms
Design, Human Factors, Theory

Keywords
Complex Adaptive System, Collaboration, CSCW

1. INTRODUCTION
In themselves, the dynamics of collaboration are complex.
In addition, while using technology to augment these col-
laborations may increase collaborative possibilities (such as
making it possible to work together across distances), the
actual collaboration dynamics remain difficult or perhaps in
some cases become more challenging due to new factors such
as changing levels of mutual awareness [9, 11]. The question
we explore in this paper is not whether group collaboration
is complex in the normal use of that term but whether it
might be useful to consider it as a complex adaptive system.
The basic components of a complex adaptive system seem

applicable in that collaborative groups change and adapt to
changing conditions over time and in that the people who
compose these groups are complex in themselves and are also
adapting to the changing conditions. We explore the ques-
tion of whether light can be shed on computer supported col-
laboration by considering it as a complex adaptive system.

One possibility where the ideas being developed as part of
CAS theory may prove useful is in the modeling and eval-
uation of collaboration dynamics. The fact that evaluating
computer supported collaboration is difficult has been stated
with increasing frequency over the last few years. This dif-
ficulty has prompted papers [7, 8, 21], workshops [13], and
has resulted in many types of frameworks and guidelines
[28, 24, 21]. In fact, discussions about the failure of stan-
dard statistical practice to properly explain collaborative
behaviour and validate good interface design pervade the
literature in this area [7, 8]. This has led to characteriza-
tions of behaviour such as the mechanics of collaboration
[24], development of guidelines for heuristic evaluation [3],
as well as more specific guidelines such as those provided by
Scott et al. [28] for co-located collaborative work on tabletop
displays. The theme among these discussions is a decompo-
sition of collaboration into constituent parts. While these
decompositions have expanded our understanding of the col-
laborative processes and have been useful for designers, they
also indicate a lack of an overall or holistic understanding of
the collaborative activity in the computational environment.

These collaboration factors do not exist in isolation and
do not always have mutually positive effects. For instance,
the tradeoff that exists between individual performance and
group awareness, noticed by Gutwin and Greenberg [9] has
now been empirically confirmed [11]. Exploration of this
tradeoff shows that support of group awareness can come at
the price of individual performance and vice versa. Thus,
the advice necessary for designers is not that these environ-
ments should support group awareness, but that they should
consider how to balance these two important parts of collab-
oration in their application. This holistic understanding can
then help the designer to develop the technology according
to the particular needs of the application.

Since decomposition into component parts may not always
help us understand how to proceed, we need to consider how
to develop a more holistic view of collaboration. In paral-
lel with our dilemma, in many other sciences, both natural
and social, there exist branches of research that are focused



Figure 1: This diagram relates linear, complex adap-
tive, and random systems. The diagram itself is not
to scale. There are so many more complex adaptive
systems than linear systems that, if this was to scale
linear systems would be less than a pin point.

on the need to develop understanding of systems that do
not respond well to decomposition. These complex adap-
tive systems (CAS) need to be studied as a whole. In this
paper, we show that the descriptions, definitions and termi-
nology used in studying CAS in other sciences can also be
used for computer supported collaboration and to provide
insight into both the evaluation and design of technology
that supports collaboration.

Scientific research is currently developing methods for the
study of non-linear systems through use of complex adap-
tive system theory. This research shows that linear systems
are a small part of a much larger spectrum of dynamical
systems including complex adaptive systems and random
systems (see Figure 1). Activities in complex adaptive sys-
tems are neither random nor linear but exhibit complex pat-
terns that depend highly on the history and context of the
system itself. Some of the characteristics of these patterns
are becoming better understood [14]. We suggest that com-
puter supported collaborative work fits more naturally in
this larger spectrum as a complex adaptive system.

2. EVALUATING CSCW
Due to the continuing challenge of evaluating collaborative
systems, several models or frameworks have been put for-
ward. Since we are suggesting including the complex adap-
tive system model as also useful in this regard, in this sec-
tion we briefly review the existing models and end by noting
successful application of CAS theory to the study of small
groups in behavioural science and its application in other
areas on computer science. There have been many attempts
to explain behaviour in CSCW. Because of the difficulties
involved in describing this behaviour, both evaluation and
design of collaborative applications have been recognized as
difficult problems [7, 8]. This difficulty has been the driving
force for a wide variety of evaluation frameworks and design
guidelines.

Neale et al. [21] discuss three types of CSCW frameworks:
methodology-oriented frameworks, conceptual frameworks,
and concept-oriented frameworks. Methodology-oriented
frameworks describe the different methods and experiments

used to evaluate CSCW applications. McGrath [18, 19],
identifies a variety of experimental methods available for
the evaluation of groups. He argues that multiple methods
must be used to triangulate the truth or falsity of a hypoth-
esis and that a single study is insufficient to simultaneously
achieve precision, realism and generalizability. Pinelle and
Gutwin [22] classify the methods that were used to evaluate
a variety of CSCW applications by the setting (naturalis-
tic vs. controlled) and manipulation technique (rigorous vs.
minimal).

Conceptual frameworks [21] describe the fundamental prop-
erties of collaboration that should be evaluated. One such
framework is the mechanics of collaboration [24, 10]. The
mechanics decompose collaboration into fundamental com-
ponents including explicit communication, consequential com-
munication, and coordination of action among others. These
mechanics have led to low-cost evaluation methods such as
heuristic evaluation [3] and design walkthroughs [23]. Scott
et al. [28] present a similar decomposition for co-located
collaboration. They identify the need for “(1) natural inter-
personal interaction, (2) transitions between activities, (3)
transitions between personal and group work, (4) transitions
between tabletop collaboration and external work, (5) the
use of physical objects, (6) accessing shared physical and
digital objects, (7) flexible user arrangements, and (8) si-
multaneous user interactions”. They suggest that tabletop
applications could be evaluated by their ability to support
these needs.

Activity theory has also been suggested as a possible concep-
tual framework in which to evaluate collaborative applica-
tions [20, 32, 21]. This approach decomposes collaboration
into a hierarchy of activity. The central level of the hierar-
chy is made up of actions which occur when the higher-level
goals become realizable and are composed of automatic pro-
cesses called operations.

Concept-oriented frameworks [21] isolate a particular aspect
of collaboration and provide advice about how to measure
the success of an application in terms of that aspect. Par-
ticipatory design methods have been extended for groups
[26], methods exist for analyzing interpersonal awareness
[33], and breakdown analysis [12] can be used to describe
problems in group dynamics. Mandryk and Inkpen [17] de-
scribe how to measure variables such as fun and excitement
in a co-located setting. These measures use physiological
indicators, such as galvanic skin response and heart rate to
quantify these previously qualitatively measured variables.

In summary, methodology-oriented frameworks provide ad-
vice about how to conduct evaluations, conceptual frame-
works indicate what it is important to measure and concept-
based frameworks describe how to measure factors that have
been deemed important. In this paper, we describe how a
well understood theory, CAS, can explain the interactions
between the identified significant concepts and in doing so
can help explain why and when different types of method-
ological approaches may be useful.

While use of CAS theory may be new to CSCW, it has
been usefully applied in the development of managerial and
organizational systems. Tan et al. [30] explain how a hospi-



tal system can be better managed when viewed as a CAS.
Ramnath and Landsbergen [25] show adaptive systems can
be used in strategic planning for city governments.

The idea of considering collaborative activity as a complex
adaptive system is also not a new idea in the behavioural
sciences. Arrow et al. [1] describe small groups as a CAS.
Arrow et al. [2] provide a review of how a temporal per-
spective has been used to good effect in the behavioural
sciences to describe how time and change affects the dy-
namics of a group. The focus in this realm of literature is
somewhat different than that in CSCW literature. From the
behavioural science perspective, the problems are specific to
understanding the actual behaviour of the group. For in-
stance, behavioural scientists explore how groups form, how
decisions are made, and how groups learn. In CSCW, the
element of technology plays a more important role. An im-
portant part of the benefit of understanding collaboration is
to help inform the design of technology to support group ac-
tivity. The purpose of this paper is to demonstrate how un-
derstanding CSCW as a complex adaptive system can help
to inform the design of computer applications that support
collaboration.

3. COMPLEX ADAPTIVE SYSTEMS (CAS)
In many other disciplines, including biology, physics and
ecology, it has been noticed that simple dynamical systems
can exhibit complex behaviour that arises from how the com-
ponents of the system interact with each other. A dynamical
system that exhibits this type of behaviour is called a com-
plex adaptive system (CAS). We start by briefly explaining
the terminology used to describe CAS.

3.1 CAS Terminology
A dynamical system is composed of two parts [4]: (1) an
environment in which the action takes place, and (2) a vector
field that defines the rules of motion. The system begins at
an initial state and follows a trajectory which has an end
point called an attractor. In many dynamical systems, the
transition from initial state to attractor occurs rapidly, so
observations of the dynamical system are typically when the
system is on or near an attractor.

There are three types of attractors: fixed-point, limit cycles,
and strange attractors. A fixed-point attractor occurs when
the final state of the system is a fixed point and depends
only on the initial state. A dynamical system can have many
fixed-point attractors. A limit cycle occurs when the system
tends toward a periodic orbit. The most common and com-
plicated attractor is the strange attractor. The structure of
a strange attractor is made up of unstable periodic orbits
and aperiodic paths.

3.2 Properties of a CAS
To help identify when a dynamical system is a CAS, it is
useful to consider the properties of a CAS as described in
ecology. Kay et al. [14] describe the properties of a CAS
from an ecological viewpoint:

Non-linear - the system cannot be understood by decom-
posing it into pieces which can then be added or mul-
tiplied [s2]together.

Holarchical - the system is nested within systems made
up of systems. It cannot be understood by focusing on
one level alone. Understanding comes from multiple
perspectives of different type and scale. A holarchy
consists of interacting levels that do not necessarily
have a set ranking.

Self-organizing - the system is non-Newtonian. The sys-
tem is composed of many agents that can each affect
their local environment. These agents self-organize
based on positive and negative feedback. This self-
organization can result in emergent and surprising prop-
erties.

Window of vitality - the system is complex, but not too
complex. There is a range within which self-organization
can occur. The system strives for an optimum, not a
minimum or maximum.

Dynamically stable - there may be no equilibrium points
for the system. Stability may only be observable when
the system is considered over a long period of time.

Multiple steady states - there is not necessarily a unique
preferred system state. Multiple attractors may be
possible in a given situation. The history of the system
may determine in which of these attractors the system
currently is.

Catastrophic and Chaotic behaviour - the system is char-
acterized by bifurcations, flips, and an inability to fore-
cast and predict. These two properties are discussed
below in greater detail.

3.3 Collaborative Activities as a CAS
In this section we explain collaboration using CAS terminol-
ogy. The environment of this dynamical system is composed
of: the technology and tools available; the composition and
structure of the group; and the group constraints such as
space, time, and distance. Perhaps a good way of thinking
about this is that it includes all the communication chan-
nels available to the group members. This would include
usual person-to-person communication channels such as ver-
bal and body language and all the factors that contribute
to each member’s awareness of the others’ actions and in-
tentions. It also includes the communication channels made
available by the technology in use whether that be video
conferencing, whiteboards or smart boards and/or mobile
devices. Largely, the agents in this CAS are the people in-
volved. However, it is possible that some factors in some
software may also act as agents.

The vector field is the set of all factors that affect an indi-
vidual agent’s beliefs over the course of the collaboration.
These include explicit factors such as knowledge of the sub-
ject of the collaboration, point of view on the subject, stated
objectives, recognized outside pressure, time commitments,
and public relationships with other collaborators. They also
include implicit factors such as personal intentions, private
relationships with collaborators, and unspoken outside pres-
sure.

The initial state(s) of the system are the properties of the
members of the group. This includes such things as their fa-
miliarity with each other, their individual abilities and emo-



tional states, among many other variables. The state of the
dynamical system will be observable as the group dynamic
or strategy at a given point in time. This state will likely
be on or near an attractor of the dynamical system from the
point of view of the observer. Attractors can include group
dynamics such as the fixed-point state of silent work, a limit
cycle of periodic turn taking, and strange attractors such as
brainstorming activities.

Next we describe how this dynamical system exhibits the
properties attributed to a CAS.

3.3.1 Non-linearity
While at least some of the variables in individual work are
reasonably well understood, the variables used to describe
success in collaboration do not follow linear relationships.
When considering computer supported individual work, due
to physiological properties of humans, individual performance
can sometimes be measured and predicted using classical
statistical analysis. Speed and accuracy have been shown
to fit a mathematical model called Fitts’ Law [5], which can
be demonstrated using linear regression. At the individual
level, this model may be sufficient to describe performance
most of the time, but in collaborative activity, performance
does not often follow this linearity. Group work often in-
corporates interruptions for a variety of activities, including
group discussions, sharing of information, and coordination.

The main point of non-linearity is that in general, it is not
possible to understand collaboration by decomposing the
system into multiple instances of a single person using tech-
nology. Research in human-computer interaction provides
much more insight into the design of interfaces for single
users and how changes in the interface will affect interac-
tion. Thus far, it has proven difficult to extend this insight
successfully to collaborative technology. This failure may be
caused, at least in part, by the non-linearity of collaboration.

3.3.2 Holarchy
There are multiple interacting levels or systems that make
up a collaboration. Each individual is a system onto him
or herself, therefore at one level, there are the physical ac-
tions of each individual at each point in time. At another
level, the main-group and sub-group strategies arise from
coordination between individuals. There are also the group
goal(s) of the collaboration that set the group actions in a
bigger society. Although it is helpful to consider each level,
they cannot be individually understood and must be consid-
ered inside the context of the other levels. This holarchy is
distinguishable from a hierarchy in that there is no implied
ordering and the levels do not stand on their own.

3.3.3 Self-organization
The agents within a collaborative environment are primarily
the members of the group. These members make decisions
based on observations they make about the system. The
local environment of each collaborator is the entirety of in-
formation available to them within their perceptual realm.
Based on positive and negative feedback from their local
environment, these agents then make local changes. Due to
these local changes, emergent properties of the system oc-
cur, such as coordination, communication, and sometimes
conflict.

3.3.4 Window of vitality
For a successful collaboration to exist a limited range of
complexity must be maintained. That is, too low a level of
complexity will limit creativity and buy-in, and too high a
level of complexity may not allow objectives to be met in
a reasonable time. It is also possible for the complexity to
reach a destructive point. For instance, if group members
cannot speak the same language or the technology is not
usable, it may be impossible to coordinate or communicate.

3.3.5 Dynamic Stability
It is typical in collaborative environments for the activity to
frequently shift from one state to the next without settling
into any equilibrium – a balanced, unchanging or periodic
state. Attention shifts easily, periods of silence are inter-
spersed with intermittent periods of frequent chatter, spa-
tial territories are established and re-established [27], and
seating patterns are often altered. The state of the system
at a particular moment is temporally dependent and will
require knowledge of the history of the situation [21].

3.3.6 Multiplicity of Steady States
To demonstrate the existence of multiple steady states, let
us consider the communication variable amount of talking.
Group members might reach a state of no talking once they
have devised a plan of action and are in the process of car-
rying out that plan. On the other hand, they may have
achieved a different steady state in which only one group
member is talking (currently has the floor). This steady
state may occur if one user has decided to present the results
of their individual work to the group. Note that it is some-
times the transition between these steady states (when the
group members must coordinate to determine who speaks)
that is most interesting and can help to inform good design
of the technology that supports this interaction. Steady
states such as these exist for other variables in the environ-
ment.

3.3.7 Catastrophic and Chaotic Behaviour
We caution the reader not to confuse the CAS terms catas-
trophe and chaos with the colloquial usage of these words.
In a CAS, a catastrophe is simply a sudden change or discon-
tinuity within a dynamical system. The term does not imply
that the system has undergone any profound or disastrous
event, it simply implies a sudden change that cannot be de-
scribed linearly. For instance, collaborations often contain
periods of coordinated group activity and of parallel individ-
ual activities designed to achieve a group goal. The switch
between these two types of collaboration tends to be sudden,
often prompted by a single comments or request. Similarly,
a chaotic system is not one without order. In fact, it ex-
plicitly does not contain random actions but is composed of
actions that cluster into complex patterns. It can be under-
stood and it can result in satisfying outcomes. We introduce
these terms because they can help in the understanding and
evaluation of non-linear systems.

In collaboration, behaviour described by the CAS terms,
catastrophe and chaos, is not only present, but appears to
be the norm. In the following sections, we describe how
catastrophe and chaos are observable in collaborative envi-
ronments.



Figure 2: A simple schematic of the normal scientific
experimental process.

3.4 CAS and Evaluation of CSCW
In the field of human-computer interaction, evaluation of in-
terfaces typically involves controlled experimentation. The
normal scientific method involves (a) the development of hy-
potheses, (b) the elimination of complexity and control of
independent and dependent variables, (c) observations, and
(d) statistical analysis (see Figure 2). Following this proce-
dure, the scientist can be relatively certain of the verity of
the starting hypothesis. Science has greatly benefited from
the success of this method and because of this procedure we
have obtained a vast amount of scientific knowledge.

This procedure has proven difficult to apply to the advance-
ment of knowledge about complex adaptive systems. Dis-
cussions about this difficulty are prevalent in other sciences
[14, 1]. In particular, presence of interlocking activities and
the general non-linearity of the collaborative processes can
make the normal elimination of complexity and control of in-
dependent and dependent variables counterproductive. The
idea to observe simpler, more manageable subsets of the pro-
cess is appealing, but the non-linearity of a complex adaptive
system implies that the parts of a system cannot simply be
added together and, as a result, the system cannot be fully
understood by studying the components in isolation. That
is, the group dynamics cannot be understood by combining
the individual properties of the group members. Moreover,
the behaviour of each individual cannot be understood with-
out situating that behaviour within the context of both the
group and the beliefs and knowledge obtained from their
experiences in society as a whole.

The response in many sciences has been to undertake studies
that differ in both formulation and results. The experiments
in these sciences are formed so that they maintain the com-
plexity of the full system. These systems may be a simplified
version of the full system, but care is taken to ensure that
the key elements of the complex system are still present.
While variables of interest may be monitored individually,
this monitoring takes places in the context of a system that
exhibits the necessary complexity. The results of these stud-
ies do not tend to provide definite answers, but rather gener-
ate an increased understanding and/or insight into the sys-
tem (see Figure 3). A trend towards these types of studies is
already apparent in the adoption of ethnographic methods
in CSCW. Examples of these types of studies are naturalistic
[22] and observational [19] studies.

An alternative approach to understanding this complexity

Figure 3: A schematic of observational study pro-
cess. The results are relatively “soft” facts but can
lead to greater understandings.

is the use of simulators. Instead of reducing the full system
to a more understandable system, a simulator approaches
the problem from the opposite direction. The agents of the
system are initially modeled to be as simple as possible and
are slowly made to be more complex until the simulated
system exhibits emergent properties that resemble those in
the full system. These systems similarly result in insight and
understanding rather than definitive answers. McGrath [19]
also describes simulators as a method that simultaneously
maintains some realism and some precision (at the cost of
generalizability).

4. RECOGNIZING A CAS
In this section we draw parallel descriptions of CSCW be-
haviour and the behaviour of a CAS from physics. Keep-
ing the examples from both CSCW and physics simple, we
show how non-linear changes in group awareness can be ex-
plained with catastrophe theory using the simple physics
example of beam buckling. For our second collaboration ex-
ample we take the characteristics of real collaborative tasks
such as air traffic control, brainstorming sessions, and hos-
pital care, and generalize them to multiple people creating
an ever changing puzzle. The possibilities of multiple differ-
ent outcomes can be described in terms of chaos theory and
paralleled in physics with the behaviour of a water wheel.
These descriptions are included to provide the reader with
the tools to identify the types of behaviours that are typical
to complex adaptive systems so they can use these theories
to explain phenomena that they may observe in collected
data.

4.1 Describing Non-Linear Changes
In order to use catastrophe theory to describe non-linear
changes in group awareness, we first explain the physics ex-
ample, beam buckling, and use it to help define common
terms used to describe catastrophe. Then in Table 1 we
draw a comparison to non-linear changes in group aware-
ness.

4.1.1 Physics Example: Beam Buckling
Catastrophe theory has been shown to be more effective
when used to provide descriptions [4] rather than predic-
tions [35, 15]. For instance, it can provide a mathematical
description of an entire set of fixed-point attractors of a dy-
namical system. The mathematical description is a function
that maps the n-dimensional control space (input) to the
m-dimensional state space (output). René Thom’s Classifi-
cation Theorem [31] proves that any dynamical system that



is catastrophic has a canonical description. An example is
the cusp catastrophe, which provides a description of the
possibles states for any system with n = 2 and m = 1. [s2]
One example of a catastrophe in the physical world occurs
when force is applied to a beam of wood (see Figure 4). This
example is adapted from Casti [4].

Figure 4: A buckling beam of wood.

The state space variable x represents the vertical displace-
ment of the beam from its resting position. The control
space, in this case, is the forces applied to the beam. The
first force, K, is applied to the ends of the beam along the
horizontal. (1) When K = 0, the beam will stay flat. When
a force is applied (K > 0), the position of the beam will ini-
tially not change, but once a threshold value is reached (2),
the beam will suddenly buckle either upward or downward.
A force, L, can then be applied in the vertical direction (3).
A negative (upward) force applied to a downward-buckled
beam will initially cause the beam to gradually flatten and
once a threshold value of L is reached, will suddenly cause
the beam to buckle upwards (4). A negative force (L < 0)
will similarly cause the beam to buckle downward again (5).
The entire set of fixed-point attractors of this dynamical sys-
tem can be drawn as a surface above the two-dimensional
control space (see Figure 5).

4.1.2 Properties of a Catastrophe
The properties of this and any other catastrophic dynamical
system provide insight into how one might identify a situa-
tion that can be explained using catastrophe theory. These
properties are universal in catastrophe theory [36]:

Figure 5: The cusp catastrophe surface for the
beam-buckling example.

Sudden jumps - small changes in the control space can
cause catastrophic changes in the state of the system.

Hysteresis - jumps to the left do not occur at same place
as jumps to the right.

Divergence - two nearby trajectories can produce signifi-
cantly different behaviour.

Bimodality - for some values in the control space, there
may be multiple possible attractors. The actual state
of the system will depend on its history.

Inaccessibility - for some values in the control space, there
may be unstable attractors. A small change in the
control space will shift the system away from this at-
tractor.

4.1.3 Collaboration Example: Group Strategies
During collaboration, sudden discontinuous changes in be-
haviour are common. Collaborators shift suddenly from one
strategy to another, discussion quickly shifts from agreeable
to argumentative, and silent parallel work abruptly transi-
tions to talkative coordination.

The parallel example in collaborative environments we con-
sider is the interplay between group awareness, speed and

Beam-buckling Group Awareness

Sudden Jumps Upward/downward buckling. Switching between parallel and cooperative strate-
gies.

Hysteresis Different vertical force required to switch from up
to down than from down to up.

When the importance of accuracy increases, the
change in strategy occurs at a different place than
when it decreases.

Divergence Slight change in initial vertical force can dictate
direction of buckling.

Slight change in initial importance of either speed
or accuracy can dictate the strategy of a group.

Bimodality For large K and L = 0, the beam can be buckled
either up or down depending on the previous state
of the system.

When both speed and accuracy are highly and
equally important, the group can take on either
a parallel or cooperative strategy.

Inaccessibility For large enough K and L = 0, if the beam is flat,
small perturbations in L will cause the beam to
buckle.

When both speed and accuracy are highly and
equally important, if the group is using a compro-
mised strategy somewhere between parallel and co-
operative, a slight change in either parameter will
cause the group to adopt one or the other.

Table 1: Properties of catastrophe for beam buckling and group awareness.



Figure 6: The cusp catastrophe surface for the group
awareness example.

accuracy. We consider the variable of group awareness as
our state space and the variables importance of speed and
importance of accuracy as our control space. Table 1 draws
a parallel between this example and the beam buckling ex-
ample and demonstrates how to apply the above properties
to identify catastrophe.

Because of these similarities, we model the interplay between
these three variables with the cusp catastrophe and perform
a similar manipulation of the control space (see Figure 6).
The group members initially place no importance on either
speed or accuracy and the group awareness is neither high
nor low (1). The importance of both speed and accuracy
increase simultaneously with no change in group awareness
until a threshold value is reached at which point the group
takes on a parallel strategy and the level of awareness drops
suddenly (2). The importance of accuracy is then increased
as the importance of speed is decreased (3). The aware-
ness level of the group rises slowly until a threshold value is
reached and the awareness level suddenly jumps up as the
group takes on a cooperative strategy requiring significant
coordination (4). An increase in the importance of speed
and decrease in the importance of accuracy will similarly
cause the awareness to drop back down as the group reor-
ganizes into a parallel strategy (5).

Describing this situation using catastrophe theory is highly
illustrative of the events that occur in collaboration. In par-
ticular, it is now clear why two seemingly similar groups
can exhibit such dissimilar behaviour. This phenomenon
has been observed in tabletop display studies [11]. Further-

more, this description provides a dynamic explanation of the
events as opposed to a summary of the final outcome (e.g.
mean and standard deviation).

The example taken from collaborative environments is not
intended to be as mathematically precise as the physical
example. Rather, it is intended to demonstrate the power
of using the same mathematical tool to explain an observ-
able phenomenon. The knowledge that this type of rela-
tionship can occur in a complex adaptive system allows the
experimenter to gain a holistic understanding of how these
variables may be interacting, despite the infeasibility of mea-
surement. This explanation can then be used to help explain
the underlying dynamics of the system as a whole.

4.2 Multiple Different Outcomes
Chaos theory is capable of describing more types of CASs
than catastrophe theory, because it allows the analysis of
strange attractors. This theory is based on the principle
that complex unpredictable behaviour can emerge from sim-
ple deterministic rules. The property most characteristic of
chaos is that a system’s behaviour may appear random, de-
spite the underlying determinism that dictates its behaviour.

4.2.1 Physics Example: Waterwheel
An example of a potentially chaotic system (adapted from
[6]) is a waterwheel. In a waterwheel, water is poured into
buckets which have holes that drain the water (see Figure 7).
The motion of a waterwheel has a fixed-point attractor when
the amount of water being poured into a single bucket is not
enough to ever fill the bucket. The waterwheel has a limit
cycle when the water is being poured at a medium pace and
the buckets fill up enough to keep the wheel moving at a
constant rate. The waterwheel also has a strange attractor
when the rate of flow of the water is very high. In this
case, the behaviour of the wheel appears erratic, speeding
up, slowing down and changing direction, never settling into
consistent predictable behaviour. Despite the complexity of
this third case, the behaviour can actually be described using
a system of mathematical equations and what is known as
the Lorenz Attractor [29].

4.2.2 Properties of Chaos
Research in chaos has identified several methods that can be
used to identify whether a CAS may be chaotic [4]. These

Figure 7: A waterwheel.



Water Wheel Changing Puzzle

Damped and
Driven

The driving force of the waterwheel is the flow
of water, which is continuous and the system is
damped by the buckets losing water, which is
also continuous.

The driving force of this system is the collective
goal of the group to complete the puzzle and the
dampening force is the regular perturbation of
the puzzle.

Sensitivity to
Initial
Conditions

In the case of the waterwheel, a slight difference
in the constant rate of flow of water can cause
radically different behaviour to occur.

In the same way that two nearby points on
a sheet of dough can become arbitrarily far
apart when stretched and folded, two nearby
puzzle pieces can be made arbitrarily far apart
through the process of collaboration to solve
the dynamically changing puzzle.

Bifurcations

The change in periodicity is observable in the
waterwheel in its change in direction and speed
of movement.

An initial strategy of edge completion may
switch to filling in the centre and may then split
again into completion of multiple patterns si-
multaneously. Another bifurcation may occur
when some users share responsibility between
completing an area and finding patterns.

Unpredictable
Behaviour

Erratic behaviour of the waterwheel when wa-
ter is flowing violently can be modelled by a
set of partial differential equations. Though,
due to the sensitivity of the system, slight mea-
surement error can cause drastically different
predictions than those that actually occur.

Despite the initial strategy that a group uses
to solve the constantly changing puzzles, the
eventual strategy will likely be an emergent and
unpredictable phenomenon.

Table 2: Properties of chaos for a waterwheel and a changing puzzle.

include some mathematical approaches for detecting bifur-
cations [16] and sensitivity to initial conditions [34] and pat-
terns in seemingly random data [4]. The properties of this
and other chaotic systems are as follows [6]:

Damped and Driven - a chaotic system is simultaneously
damped by an external force (or energy) and driven by
an internal force (or energy). Chaos can result even
when these forces are predictable, such as periodic or
continuous forces.

Sensitivity to Initial Conditions - two similar initial
states can tend to arbitrarily different results, and two
arbitrarily different initial states can tend to similar
results.

Bifurcations - chaotic systems exhibit sudden changes in
periodicity. A repeated pattern of period two will sud-
denly branch into a repeated pattern of period four,
and then eight and so on, until patterns of behaviour
are no longer discernable.

Unpredictable behaviour - chaotic systems are charac-
terized by their seemingly random behaviour. This be-
haviour, however, is not random, but simply appears
that way to the observer.

4.2.3 Collaboration Example: Adaptive Planning
Collaborative environments exhibit some chaotic properties.
To illustrate these properties, we consider the collaborative
task of adaptive planning. For adaptive planning, while
the end goal may remain constant, such as general health
goals of a hospital, collaborators must continually adapt to
the current state of the system in which such things as the
number of patients and the state of their health is always

changing. Other adaptive planning tasks include air traf-
fic control, brainstorming sessions, fire fighting and other
emergency response work. To simplify the explanation we
model this as collaboratively solving a hypothetical jigsaw
puzzle. Unlike a real jigsaw puzzle, this puzzle never gets
completely solved. After a specific period of time (e.g. one
minute), the puzzle is perturbed so that any “correct” pieces
are no longer correct (e.g. by changing the picture on each
piece). This ever changing puzzle models adaptive planning
in that a move that was good a moment ago may no longer
be appropriate. Similarities can be drawn between this hy-
pothetical task and the example of the waterwheel. Table 2
draws this comparison.

Other dampening forces in collaboration might include time
and space constraints as well as interruptions. The driving
force will typically be a shared goal of the collaborators.
Despite the periodicity of the perturbations and the perhaps
predictable speed of motion of the collaborators, the actions
or group strategies that follow may not be easy to predict.

Again, the example provided for collaboration is not as math-
ematically precise as the waterwheel example. Our intention
is to demonstrate that chaos theory can help to understand
the underlying behaviour of the complex adaptive system.
An important consequence of realizing the presence of chaos
in the underlying dynamics of collaboration is that collabo-
ration cannot be easily predicted. We suggest that predict-
ing behaviour in collaboration is similar to predicting the
weather (yet another chaotic system). It may be possible
to observe certain patterns (like seasonal changes), but a
short-term forecast that describes the next state based only
on the last, is a difficult (perhaps impossible) endeavour.
This realization can help to guide the types of experimenta-
tion that researchers perform and can help to validate many



of the observed results.

4.3 Computer-Supported Complexity
Despite the unpredictability and sudden changes that are
ubiquitous in collaborative environments, it is possible to
support this complex adaptive system with technology. In
the above examples, the observed strategies of the group are
what changes suddenly and may be unpredictable. A design
lesson from this understanding is to support the seamless
transition between these multiple strategies. For instance,
the technology should not interfere with a group’s decision to
change at will (i.e. suddenly and unpredictably) from paral-
lel work to coordinated collaborative interaction. The use of
complex adaptive system theory may enable a move beyond
the tradeoff between individual work and group awareness
[9, 11] to a more holistic understanding of how to shift be-
tween the two.

In a recent study at an interactive tabletop [reference re-
moved for blind review], we discovered that interface changes
can make this transition more seamless. The interface ad-
heres to the property of a CAS that agents within a CAS
are only able to affect a change in their local environment.
To cause a change at a distance, a local change must be in-
voked that in turn ripples through to the rest of the interface
(using animation). These local changes eventually develop
into the complexity which is fundamental to the system as
a whole. Users of the system were observed to easily shift
between individual work and coordinated activity. We also
observed that users frequently took advantage of this abil-
ity to shift, in contrast to a previous experiment with an
interface that did not adhere to this property [reference re-
moved for blind review], where users typically would only
shift strategies once or twice throughout the entire session.

In general, the recognition of the complexity and a more
holistic understanding can help to inform the design of col-
laborative interfaces. Although CAS theory does not pro-
vide much in the way of a predictive model, this under-
standing will provide researchers with an intuition about
what effect certain design decisions may have on a particu-
lar complex adaptive system.

5. CONCLUSION & FUTURE WORK
We have shown that collaboration can be described as a
complex adaptive system. Describing collaboration in this
manner expands our ability to analyze and evaluate this
environment and therefore allows for a more informed design
of supporting computer applications. In particular, CAS
theory allows us to describe behaviour and activity beyond
the bounds of linearity. This theory also provides a means
for understanding collaboration as a dynamical (non-static)
system that changes over time.

Because collaboration is a complex adaptive system, it is
possible to observe chaos and catastrophe. The underlying
theories that describe these systems can then be applied to
the specific examples. These theories can be used as tools
to provide a holistic understanding of the observed events.

Framing collaboration in this manner can help to inform
what constitutes an appropriate study of this environment.
We can borrow advice from the physical sciences and be-

gin our studies with a generative strategy. This generative
approach will help elucidate the most important aspects of
what we now understand to be a complex adaptive system.
We can then use this knowledge to “strip down” the environ-
ment to a minimal collaborative environment that maintains
these key aspects. Study of this minimal (but still complex)
system can then be used to understand the larger system.

Recognition that collaboration is a CAS also validates much
of the current practice in evaluation of collaborative tech-
nologies. Despite not framing collaboration in this manner,
many researchers have chosen an observational approach to
studies and have recognized that analytical tools such as
analysis of variance (ANOVA) and T-tests may not be suit-
able in this domain. As in other sciences that explore CASs,
the analysis typically involves the search for complex pat-
terns in the data, such as space usage [27], eye contact and
physiological indications of fun and excitement [17].

In the future, we intend to apply CAS theory in the domain
of CSCW in more detail. We will use the techniques and
ideas outlined in this paper to explain a variety of phenom-
ena that we have observed in our studies. Through this pro-
cess, we intend to show that CAS theory will allow the ex-
ploration of previously unexplored and inherently non-linear
aspects of collaboration.

6. REFERENCES
[1] Arrow, H., McGrath, J. E., and Berdahl, J. L.

Small groups as complex systems: Formation,
coordination, development, and adaptation. Sage,
Thousand Oaks, CA, 2000.

[2] Arrow, H., Poole, M. S., Henry, K. B.,
Wheelan, S., and Moreland, R. Time, change, and
development: The temporal perspective on groups.
Small Group Research 35, 1 (February 2004), 73–105.

[3] Baker, K., Greenberg, S., and Gutwin, C.
Empirical development of a heuristic evaluation
methodology for shared workspace groupware. In
Proc. CSCW (2002), ACM Press, pp. 96–105.

[4] Casti, J. L. Complexification: Understanding a
paradoxical world through the science of surprise.
Harper Collins, New York, NY, 1994.

[5] Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of
movement. Experimental Psychology 47, 6 (1954),
381–391.

[6] Gleick, J. Chaos: Making a new science. Penguin
Books, New York, NY, 1988.

[7] Grudin, J. Why groupware applications fail:
Problems in design and evaluation. Office: Technology
and People 4, 3 (1988), 245–264.

[8] Grudin, J. Groupware and social dynamics: Eight
challenges for developers. Communications of the
ACM 37, 1 (1994), 92–105.

[9] Gutwin, C., and Greenberg, S. Design for
individuals, design for groups: Tradeoffs between
power and workspace awareness. In Proc. CSCW
(1998), ACM Press, pp. 207–216.



[10] Gutwin, C., and Greenberg, S. The mechanics of
collaboration: Developing low cost usability evaluation
methods for shared workspaces. In Proc. IEEE
International Workshops on Enabling Technologies
(2000), pp. 98–103.

[11] Hancock, M. S., Shen, C., Forlines, C., and
Ryall, K. Exploring non-speech auditory feedback at
an interactive multi-user talbetop. In Proc. Graphics
Interface (2005), ACM Press, pp. 41–50.

[12] Hartswood, M., and Proctor, R. Design
guidelines for dealing with breakdowns and repairs in
collaborative work settings. International Journal of
Human-Computer Interaction 53, 1 (2000), 91–120.

[13] Inkpen, K., Mandryk, R., DiMicco, J. M., and
Scott, S. Methodologies for evaluating collaboration
in co-located environments. In CSCW (Workshop)
(2004).

[14] Kay, J. J., Regier, H. A., Boyle, M., and
Francis, G. An ecosystem approach for
sustainability: Addressing the challenge of complexity.
Futures 31, 7 (1999), 721–742.

[15] Kolata, G. Catastrophe theory: the emperor has no
clothes. Science 196, 287 (April 1977), 350–351.

[16] Li, T. Y., and Yorke, J. A. Period three implies
chaos. American Math Monthly 82 (1975), 985–992.

[17] Mandryk, R. L., and Inkpen, K. M. Physiological
indicators for the evaluation of co-located
collaborative play. In Proc. CSCW (2004), ACM
Press, pp. 102–111.

[18] McGrath, J. E. Groups: Interaction and
performance. Prentice-Hall, Englewoods Cliffs, NJ,
1984.

[19] McGrath, J. E. Methodology matters: Doing
research in the behavioral and social sciences. In
Human-Computer Interaction: Toward the Year 2000,
R. M. Baecker, J. Grudin, W. A. S. Buxton, and
S. Greenberg, Eds. Morgan Kaufmann Publishers, San
Francisco, CA, 2000, pp. 152–169.

[20] Nardi, B. A. Context and consciousness: Activity
theory and human-computer interaction.
Massachusetts Institute of Technology, Cambridge,
MA, 1995.

[21] Neale, D. C., Carroll, J. M., and Rosson, M. B.
Evaluating computer-supported co-operative work:
Models and frameworks. In Proc. CSCW (2004),
ACM Press, pp. 112–121.

[22] Pinelle, D., and Gutwin, C. A review of groupware
evaluations. In Proc. IEEE International Workshops
on Enabling Technologies (2000), pp. 86–91.

[23] Pinelle, D., and Gutwin, C. Groupware
walkthrough: Adding context to groupware usability
evaluation. In Proc. CHI (2002), ACM Press,
pp. 455–462.

[24] Pinelle, D., Gutwin, C., and Greenberg, S. Task
analysis for groupware usability evaluation: Modeling
shared-workspace tasks with the mechanics of
collaboration. TOCHI 10, 4 (2003), 281–311.

[25] Ramnath, R., and Landsbergen, D. IT-enabled
sense-and-respond strategies in complex public
organizations. Communications of the ACM 48, 5
(May 2005), 58–64. SPECIAL ISSUE: Adaptive
complex enterprises.

[26] Ross, S., Ramage, M., and Rogers, Y. PETRA:
Participatory evaluation through redesign and
analysis. Interacting with Computers 10, 4 (1995),
335–360.

[27] Scott, S. D., Carpendale, M. S. T., and Inkpen,
K. M. Territoriality in collaborative tabletop
workspaces. In Proc. CSCW (2004), ACM Press,
pp. 294–303.

[28] Scott, S. D., Grant, K. D., and Mandryk, R. L.
System guidelines for co-located, collaborative work
on a tabletop display. In Proc. ECSCW (2003),
Kluwer Academic, pp. 159–178.

[29] Sparrow, C. The Lorenz equations: Bifurcations,
chaos, and strange attractors. Springer-Verlag, New
York, NY, 1982.

[30] Tan, J., Wen, H. J., and Awad, N. Health care and
services delivery systems as complex adaptive systems.
Communications of the ACM 48, 5 (May 2005), 36–44.
SPECIAL ISSUE: Adaptive complex enterprises.

[31] Trotman, D. The classification of elementary
catastrophes of codimension ≤ 5. Mathematics 525
(1976), 263–327.

[32] Tuikka, T. Remote concept design from an activity
theory perspective. In Proc. CSCW (2002), ACM
Press, pp. 186–195.

[33] Whittaker, S., and Schwarz, H. Meetings of the
board: the impact of scheduling medium on long term
group coordination in software development.
Computer Supported Cooperative Work 8, 3 (1999),
175–205.

[34] Wolf, A., Swift, J. B., Swinney, H. L., and
Vastano, J. A. Determining Lyapunov exponents
from a time series. Physica D Nonlinear Phenomena
16 (1985), 285–317.

[35] Zahler, R., and Sussman, H. Claims and
accomplishments of applied catastrophe theory.
Nature 269 (October 1977), 759–763.

[36] Zeeman, E. C. Catastrophe theory. Scientific
American 234, 4 (1976), 65–83. Published in original
form in: Zeeman, E. C. Catastrophe Theory, Selected
Papers 1972–1977, Addison-Wesley, 1977, p. 18.


