
Industrially Validating Longitudinal Static and Dynamic Analyses

Reid Holmes
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

rtholmes@cs.uwaterloo.ca

David Notkin
Computer Science & Engineering

University of Washington
Seattle, WA, USA

notkin@cs.washington.edu

Mark Hancock
Department of Management Sciences

University of Waterloo
Waterloo, ON, Canada

mark.hancock@uwaterloo.ca

Abstract—Software systems gradually evolve over time, be-
coming increasingly difficult to understand as new features
are added and old defects are repaired. Some modifications
are harder to understand than others; e.g., an explicit method
call is usually easy to trace in the source code, while a
reflective method call may perplex both developers and analysis
tools. Our tool, the Inconsistency Inspector, collects static and
dynamic call graphs of systems and composes them to help
developers more systematically address the static and dynamic
implications of a change to a system.

We have quantitatively validated the Inconsistency Inspector
and have convinced ourselves that it can expose both interesting
and surprising facets of a system’s evolution. An initial case
study with an industrial organization showed promise leading
to the Inconsistency Inspector being installed at the organiza-
tion for the past several months in preparation for a more in
depth analysis.

In July 2012 we will have the opportunity to examine
8 months of industrial data, enabling us to perform an in-
depth longitudinal evaluation of how their system has evolved
and whether the Inconsistency Inspector can expose surprising
and helpful facts for the industrial team. At the USER
workshop, we hope to gather opinions about evaluation options
for validating the industrial utility of our approach and the
complex longitudinal data we have collected.

I. INTRODUCTION

We have developed an approach to concurrently capture
a system’s static and dynamic call graphs as the system
evolves. By leveraging both static and dynamic data, we
are able to compose the collected data to help the developer
gain insight into their system’s changes [3].

For example, consider a scenario where we have the static
call graphs before (vs1) and after (vs2) a developer makes a
change along with the dynamic call graphs before (vd1) and
after (vd2) the same change. We can compose vs1 and vs2
to learn what calls the developer statically added or removed
in their change. We can also compose the vd1 and vd2 to
learn what the runtime effects of the developer’s changes
were. While this information may help the developer note
inconsistencies in the call graphs (for example, a method call
was statically added but didn’t execute due to some other
error), the developer must manually reconcile the different
call graphs (for instance to remove all of the method calls
that were statically added and dynamically executed). To

help developers better understand the dynamic impact of
their static changes, our approach overlays all four sets to
split the results into 15 partitions (plus the uninteresting
empty partition).

In this way, we believe “interesting” or “surprising”
inconsistencies can be exposed more effectively than when
only two sets of one kind of call graph are analyzed.
In particular, we hypothesize that four of the partitions
represent likely inconsistencies between a static change and
their dynamic impact, while four others could be of interest
depending on the developer’s task. We do not believe the
remaining partitions contain information developers would
be interested in. We also believe that useful data could be
highlighted when considered longitudinally, that is when
weeks or months of data is considered at a time.

At its core, our approach aims to address Dijkistra’s con-
cern that “our intellectual powers are rather geared to master
static relations and that our powers to visualize processes
evolving in time are relatively poorly developed” [1, p. 147].

Dijkstra made this observation because with just a glance
at the code of a structured program, a developer could
gain a strong understanding of the runtime behaviour of
their system. For other reasons, however, powerful language
mechanisms, such as implicit invocation and dependency
inversion have increased the cognitive gap between the static
source code and its dynamic behaviour. Our approach is
aimed squarely at reducing this gap using tools rather than
language structures.

II. OUR APPROACH

We envision three key applications of our approach from
the developer’s point of view:

1) Proactive detection of changes that make the dynamic
behaviour of the system more opaque.

2) Test-suite augmentation: by recording the dynamic call
graph with each test suite execution, test reports can
be augmented to provide more data about how the
system executes beyond just reporting pass or fail and
execution time.

3) Longitudinal analysis of dynamic program behaviour
to assess program stability and change impact analysis.

978-1-4673-1859-4/12/$31.00 c© 2012 IEEE USER 2012, Zurich, Switzerland43

Our current tool has focused on efficiently collecting the
static and dynamic data without developer intervention as a
part of the nightly build process. As such, the only interface
we have currently developed simply shows the output data
in a complex venn diagram, annotating the partitions with
a label, a count of the edges in the partition, and a colour
associated with our categorization of the partition; a sample
view of our current interface is shown in Figure 1. In
order to populate the diagram, the developer must select
the two versions they are interested in; the data can then
be explored by clicking on the regions in the venn diagram
which takes the developer to HTML pages displaying the
call relationships in that partition.

V2D

V1D

V1SV2S

d-

d+

s+

s+d+ sdsd+

s

d

s- s-d-

sd-

Counts

31 59
122

176

58 68,587

15

0

11

399,933

284,019

Figure 1. The current inconsistency inspector interface.

This initial interface allows basic visualization of the large
set of data we have collected, but it provides only limited
interaction and relies heavily on labels. The inconsistency
inspector also focuses on individual changes rather than on
trends and patterns that appear over a long period of time
(e.g., 100’s or 1000’s of changes).

III. DESIGN STRATEGY

We are actively exploring a variety of design alternatives
to the visualization of this information. Specifically, we are
investigating ways of providing a visual representation of
(a) the members of each partition, (b) the changes across
two versions of the code (rather than using labels), and (c)
changes across more than two versions.

To represent the members of each partition, we are
considering a variety of possible mappings. One alternative
is to represent each change as a point on our existing
visualization. These points could then be coloured using the
same scheme, and another visual variable (such as shape
or texture) could be used to represent a change over two
versions of code. The changes over a longer period of time
could then be represented using animation. We are also
exploring the possibility of using a technique such as Bub-
bleSets [2] to represent set membership. With this method,
each change could again be represented as a coloured point,

but these points would be mapped spatially to time across
the horizontal axis. The vertical axis could then be used for
the combinations of s and d and set membership would be
represented using an isocontour. These are two examples
of very early design ideas; however, we intend to use an
iterative design strategy to create this next visualization, and
so we expect these ideas to evolve significantly.

IV. EVALUATION STRATEGY

Our approach has been tailored to help developers dis-
cover surprising properties of their system by carefully
filtering relationships we do not believe are relevant to the
developer. While we can perform retroactive quantitative
evaluations on our own, ultimately we need feedback from
real developers to effectively evaluate the utility of our
approach.

To date we have performed two main evaluations (both
previously reported [3]). First, we performed a quantitative
evaluation that examined 10 versions of three different
systems (9 pairwise changes per system). This evaluation
confirmed that more than 99% of elements fall into partitions
we believe are uninteresting to the developer; this leaves an
average of 3 elements in the interesting partitions for the
developer to investigate. We also found that the changes
we expose and classify as ‘inconsistent’ were difficult (or
impossible) to predict given a static code inspection alone.

Next, we ran the tool over 21 development versions of
an industrial project. One industrial developer examined the
results and confirmed that the results seemed promising. At
their request, we installed the tool backend at their jobsite;
it has now been collecting data nightly for the past several
months.

We will be spending a month at the company this summer
and would like to use this workshop as an opportunity to
determine an effective way to validate our approach with
them. By the time we arrive we will have collected 8 months
worth of data; we will also have the opportunity to try some
prototype interfaces for exploring the data with them in
advance.

REFERENCES

[1] E. W. Dijkstra, “Letters to the editor: Go to statement consid-
ered harmful,” Communications of the ACM, vol. 11, no. 3, pp.
147–148, 1968.

[2] C. Collins, G. Penn, and S. Carpendale, “Bubble sets: Reveal-
ing set relations with isocontours over existing visualizations,”
Transactions on Visualization and Computer Graphics, pp.
1009–1016, 2009.

[3] R. Holmes and D. Notkin, “Identifying program, test, and en-
vironmental changes that affect behaviour,” in Proceedings of
the International Conference on Software Engineering, 2011,
pp. 371–380.

44

