Assignment 1 ## Factorial (Two-Way) ANOVA You will be able to perform a factorial analysis of variance (ANOVA) and interpret the meaning of the results (both main effects and interactions). February 15, 2008 ### Variables (Revisited) - Independent Variables - -a.k.a. Factors - Dependent Variables - -a.k.a. Measures #### Factor - e.g., technique: - TreeMap vs. Phylotrees vs. ArcTrees How many levels does the "technique" factor have? February 15, 2008 #### Factorial Design Remember the assignment - Two factors: - gender (male, female) - technique (TreeMap, Phylotrees, ArcTrees) February 15, 2008 ## Factorial Design Cells #### How did we test these six groups? What did we find out? What could we have found out? Was what we did valid? #### Factorial ANOVA What is the null hypothesis? #### Factorial ANOVA What are the null hypotheses? ## Main Effects #### Main Effects #### Gender Technique | | Male | Female | |------------|---------|---------| | TreeMap | μ_1 | μ_2 | | Phylotrees | μ_3 | μ_4 | | ArcTrees | μ_5 | μ_6 | μ_{Tree} Map $\mu_{Phylotrees}$ $\mu_{ArcTrees}$ μ_{Male} μ_{Female} ### Null Hypotheses Main effect of gender: $$\mu_{\text{Male}} = \mu_{\text{Female}}$$ Main effect of technique: $$\mu_{\text{TreeMap}} = \mu_{\text{Phylotrees}} = \mu_{\text{ArcTrees}}$$ February 15, 2008 Do headlights help see pedestrians? #### Time of Day Lights | | Night | Day | |---------------|---------|---------| | Headlights | μ_1 | μ_2 | | No Headlights | μ_3 | μ_4 | Do headlights help see pedestrians? #### Time of Day Lights | | Night | Day | |---------------|-------|------| | Headlights | good | good | | No Headlights | bad | good | #### Results? - Main effects - Day is "better" than night - Headlights are "better" than no headlights Is that the real story? February 15, 2008 #### What about the cell means? What other null hypothesis could we test? $$\mu_1 = \mu_2 = \dots = \mu_4$$ Why not? #### Interactions ## What is our third null hypothesis? - e.g. conclusion: - The effect of headlights depends on whether it is day or night. - Null hypothesis in words: - The main effect of one factor does not depend on the levels of another factor. #### Alternative Hypothesis The main effect of factor X depends on the levels of factor Y. ## **Null Hypothesis** Factor 1 Factor 2 | | Level 1 | Level 2 | |---------|------------|------------| | Level 1 | μ_{11} | μ_{12} | | Level 2 | μ_{21} | μ_{22} | | Level 3 | μ_{31} | μ_{32} | ## Null Hypothesis $$\mu_{11} - \mu_{12} = \mu_{21} - \mu_{22} = \mu_{31} - \mu_{32}$$ In general: $$\mu_{ij} - \mu_{i'j} = \mu_{ij'} - \mu_{i'j'}$$ for all combinations of i, i', j, j' ## **Null Hypothesis** #### Null Hypotheses - Main effects: - row means are equal - column means are equal - Interaction: - the pattern of differences in one row/column do not account for the pattern of differences in another row/column #### Factorial ANOVA Math #### F-scores Calculate F for each null hypothesis $$F = \frac{MS_{BG}}{MS_{WG}}$$ ## Sum of Squares (revisited) $$SS = \sum_{i=1}^{n} (x_i - \mu)^2$$ $$= \sum_{i=1}^{n} (x_i)^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$ February 15, 2008 ### Sum of Squares (revisited) $$SS_{Total} = SS_{BG} + SS_{WG}$$ $$SS_{BG} = SS_{rows} + SS_{cols} + SS_{rows \times cols}$$ #### Factorial ANOVA Table | | Degrees of Freedom | Sum of
Squares | Mean Square | F | |---------------|--------------------|-------------------|-------------|---| | Factor 1 | | | | | | Factor 2 | | | | | | Interaction | | | | | | Within Groups | | | | | | Total | | | | | | | Degrees of Freedom | Sum of
Squares | Mean Square | F | |--------------------------|--------------------|-------------------|-------------|------| | Gender | 1 | 712.89 | 712.89 | 6.38 | | Condition | 1 | 462.25 | 462.25 | 4.14 | | Gender ×
Condition | 1 | 1.21 | 1.21 | 0.01 | | Error
(Within Groups) | 96 | 10,720.82 | 111.68 | | | Total | 99 | 11,897.17 | | | #### Break: 15 Minutes | raw
data | | В | | | | |-------------|---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | lev | el 1 | lev | el 2 | | A | level 1 | 20.4
20.0
24.5
19.7
17.3 | 17.4
18.4
21.0
22.3
23.3 | 20.5
26.6
25.4
22.6
22.5 | 26.3
19.8
28.2
23.7
22.6 | | | level 2 | 22.4
22.4
26.2
28.8
26.3 | 19.1
25.4
25.1
21.8
25.2 | 34.1
32.6
29.0
29.0
25.7 | 21.9
28.5
25.8
27.1
24.4 | | raw
data | | | | | | |-------------|---------|---|--|--|--| | | uata | level 1 level 2 | | rows | | | A | level 1 | $N_{g1}=10$ $X_{g1}=204.3$ $X_{g1}^2=4226.3$ | $N_{g2}=10$
$X_{g2}=238.2$
$X_{g2}^{2}=5741.4$ | N _{r1} =20
X _{r1} =442.5 | | | | level 2 | $N_{g3}=10$
$X_{g3}=242.7$
$X_{g3}^2=5961.34$ | $N_{g4}=10$
$X_{g4}=278.1$
$X_{g4}^2=7855.3$ | N _{r2} =20
X _{r2} =520.8 | | | | columns | N _{c1} =20
X _{c1} =447.0 | $N_{c2} = 20$
$X_{c2} = 516.3$ | $N_T = 40$
$X_T = 963.3$
$X_T^2 = 23784.4$ | | | Source | SS | df | MS | F | Р | |--------------------------|--------|----|--------|-------|------| | between groups | 273.39 | 1 | | | | | rows | 153.27 | 1 | 153.27 | 17.67 | <.01 | | columns | 120.06 | 1 | 120.06 | 13.84 | <.01 | | interaction | 0.06 | 1 | 0.06 | 0.01 | ns | | within groups
(error) | 312.31 | 36 | 8.68 | | | | TOTAL | 585.70 | 39 | | | | ## Three-Way ANOVA #### What's different about a three-way ANOVA? ## Example - Factors: - Gender (Male, Female) - Screen Orientation (Horizontal, Vertical) - Screen Size (Small, Medium, Large) ## Null Hypotheses - Main effects - gender, screen orientation, screen size (no diff) - Interactions (2-way) - gender × screen orientation - gender × screen size - screen orientation × screen size (no pattern) - Interactions (3-way) - gender × screen orientation × screen size (?) ## Three-way Alternate Hypothesis - Interpretation #1: - The main effect of a factor depends on the levels of both of the other two factors - Interpretation #2: - The interaction effect between two factors depends on the level of another #### Factor 1 Level 1 Level 2 Level 1 μ_{111} μ_{121} Level 2 μ_{211} μ_{221} Level 3 μ_{311} μ_{321} #### Factor 1 | | | Level 1 | Level 2 | |-----|---------|-------------|-------------| | r 2 | Level 1 | μ_{112} | μ_{122} | | cto | Level 2 | μ_{212} | μ_{222} | | Га | Level 3 | μ_{312} | μ_{322} | Level 1 Level 2 Factor 3 ## Factorial ANOVA Table | | Degrees of Freedom | Sum of
Squares | Mean
Square | F | |--------------------------------|--------------------|-------------------|----------------|---| | Factor 1 | | | | | | Factor 2 | | | | | | Factor 3 | | | | | | Factor 1 × Factor 2 | | | | | | Factor 1 × Factor 3 | | | | | | Factor 2 × Factor 3 | | | | | | Factor 1 × Factor 2 × Factor 3 | | | | | | Within Groups | | | | | | Total | | | | | # Between-Participants vs. Within-Participants ## Participant Assignment Factor 1 | | | 1 | | |---|---|---|---| | | Į | | | | | |) | | | C | | | Ì | | | C | | | | | 1 | 0 | | | L | | | | | | Level 1 Level 2 | | |---------|-----------------|--------| | Level 1 | N = 10 | N = 10 | | Level 2 | N = 10 | N = 10 | | Level 3 | N = 10 | N = 10 | ## Between Participants #### Factor 1 | | Level 1 | Level 2 | |---------|---------|---------| | Level 1 | Group 1 | Group 2 | | Level 2 | Group 3 | Group 4 | | Level 3 | Group 5 | Group 6 | ## Within Participants #### Factor 1 | | Level 1 | Level 2 | |---------|---------|---------| | Level 1 | Group 1 | Group 1 | | Level 2 | Group 1 | Group 1 | | Level 3 | Group 1 | Group 1 | ## Mixed Design #### Factor 1 | | Level 1 | Level 2 | |---------|---------|---------| | Level 1 | Group 1 | Group 2 | | Level 2 | Group 1 | Group 2 | | Level 3 | Group 1 | Group 2 | #### How does this change the math? #### T-test Independent Variance variability = $$\sqrt{\frac{\sigma_T^2 + \sigma_P^2}{n_T + n_P}}$$ Paired Variance ## One-Way ANOVA #### Independent | | Degrees of Freedom | Sum of
Squares | Mean Square | F | |----------------|--------------------|-------------------|-------------|---| | Between Groups | | | | | | Within Groups | | | | | | Total | | | | | #### Repeated Measures | | Degrees of
Freedom | Sum of Squares | Mean
Square | F | |---------------------------|-----------------------|----------------|----------------|------------| | Factor | | | | | | Subjects | | | | | | Error (Factor × Subjects) | | | | | | Total | | | | MaykHanaak | February 15, 2008 Slides by Mark Hancock ## Two-Way ANOVA | | Degrees of Freedom | Sum of
Squares | Mean
Square | F | |--------------------------------|--------------------|-------------------|----------------|---| | Subjects | | | | | | Factor 1 | | | | | | Factor 1 × Subjects | | | | | | Factor 2 | | | | | | Factor 2 × Subjects | | | | | | Factor 1 × Factor 2 | | | | | | Factor 1 × Factor 2 × Subjects | | | | | | Total | | | | | ## Post-hoc Analysis #### Main Effects - Main effect for factor with two levels - No need to do post-hoc - Main effect for factor with >2 levels - Same as one-way ANOVA - Pairwise t-tests ## How do we (correctly) interpret the results when there's an interaction effect? ## Example There is a significant interaction between gender and technique. example answer: men were quicker with TreeMaps than with Phylotrees and ArcTrees, but women were quicker with ArcTrees than with Phylotrees and TreeMaps. ## Example #### Post-hoc Tests - For each level of one factor - pairwise comparisons of each level of the other Hold level of one factor constant ## Three-Way Interactions Much more difficult to interpret Same strategy: hold levels of two factors constant and perform pairwise comparisons Alternate strategy: don't bother (use graphs)