Assignment 1

Factorial (Two-Way) ANOVA

You will be able to perform a factorial analysis of variance (ANOVA) and interpret the meaning of the results (both main effects and interactions).

February 15, 2008

Variables (Revisited)

- Independent Variables
 - -a.k.a. Factors

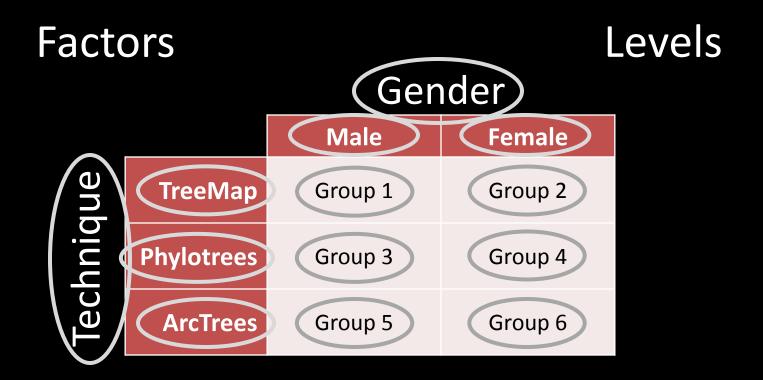
- Dependent Variables
 - -a.k.a. Measures

Factor

- e.g., technique:
 - TreeMap vs. Phylotrees vs. ArcTrees

 How many levels does the "technique" factor have?

February 15, 2008


Factorial Design

Remember the assignment

- Two factors:
 - gender (male, female)
 - technique (TreeMap, Phylotrees, ArcTrees)

February 15, 2008

Factorial Design

Cells

How did we test these six groups?

What did we find out?

What could we have found out?

Was what we did valid?

Factorial ANOVA

What is the null hypothesis?

Factorial ANOVA

What are the null hypotheses?

Main Effects

Main Effects

Gender

Technique

	Male	Female
TreeMap	μ_1	μ_2
Phylotrees	μ_3	μ_4
ArcTrees	μ_5	μ_6

 μ_{Tree} Map

 $\mu_{Phylotrees}$

 $\mu_{ArcTrees}$

 μ_{Male}

 μ_{Female}

Null Hypotheses

Main effect of gender:

$$\mu_{\text{Male}} = \mu_{\text{Female}}$$

Main effect of technique:

$$\mu_{\text{TreeMap}} = \mu_{\text{Phylotrees}} = \mu_{\text{ArcTrees}}$$

February 15, 2008

Do headlights help see pedestrians?

Time of Day

Lights

	Night	Day
Headlights	μ_1	μ_2
No Headlights	μ_3	μ_4

Do headlights help see pedestrians?

Time of Day

Lights

	Night	Day
Headlights	good	good
No Headlights	bad	good

Results?

- Main effects
 - Day is "better" than night
 - Headlights are "better" than no headlights

Is that the real story?

February 15, 2008

What about the cell means?

What other null hypothesis could we test?

$$\mu_1 = \mu_2 = \dots = \mu_4$$

Why not?

Interactions

What is our third null hypothesis?

- e.g. conclusion:
 - The effect of headlights depends on whether it is day or night.

- Null hypothesis in words:
 - The main effect of one factor does not depend on the levels of another factor.

Alternative Hypothesis

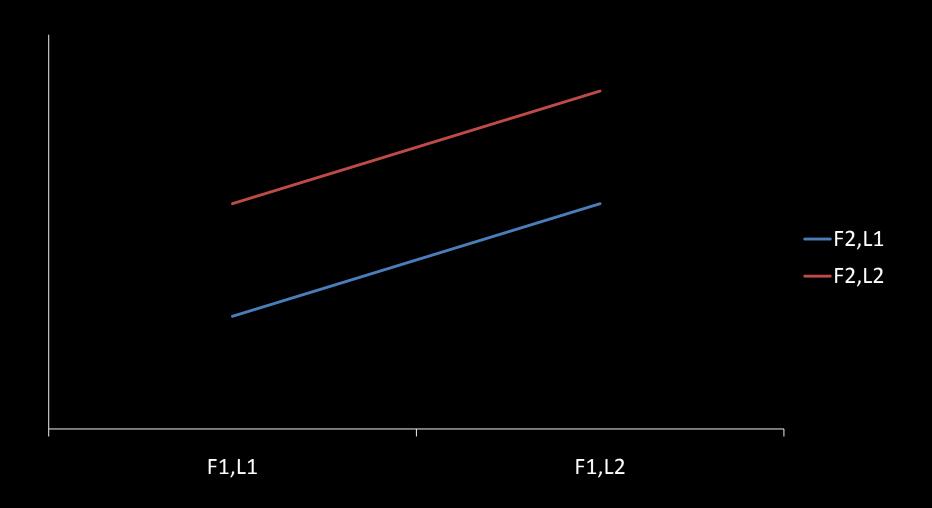
 The main effect of factor X depends on the levels of factor Y.

Null Hypothesis

Factor 1

Factor 2

	Level 1	Level 2
Level 1	μ_{11}	μ_{12}
Level 2	μ_{21}	μ_{22}
Level 3	μ_{31}	μ_{32}


Null Hypothesis

$$\mu_{11} - \mu_{12} = \mu_{21} - \mu_{22} = \mu_{31} - \mu_{32}$$

In general:

$$\mu_{ij} - \mu_{i'j} = \mu_{ij'} - \mu_{i'j'}$$
for all combinations of i, i', j, j'

Null Hypothesis

Null Hypotheses

- Main effects:
 - row means are equal
 - column means are equal

- Interaction:
 - the pattern of differences in one row/column do not account for the pattern of differences in another row/column

Factorial ANOVA Math

F-scores

Calculate F for each null hypothesis

$$F = \frac{MS_{BG}}{MS_{WG}}$$

Sum of Squares (revisited)

$$SS = \sum_{i=1}^{n} (x_i - \mu)^2$$

$$= \sum_{i=1}^{n} (x_i)^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$

February 15, 2008

Sum of Squares (revisited)

$$SS_{Total} = SS_{BG} + SS_{WG}$$

$$SS_{BG} = SS_{rows} + SS_{cols} + SS_{rows \times cols}$$

Factorial ANOVA Table

	Degrees of Freedom	Sum of Squares	Mean Square	F
Factor 1				
Factor 2				
Interaction				
Within Groups				
Total				

	Degrees of Freedom	Sum of Squares	Mean Square	F
Gender	1	712.89	712.89	6.38
Condition	1	462.25	462.25	4.14
Gender × Condition	1	1.21	1.21	0.01
Error (Within Groups)	96	10,720.82	111.68	
Total	99	11,897.17		

Break: 15 Minutes

raw data		В			
		lev	el 1	lev	el 2
A	level 1	20.4 20.0 24.5 19.7 17.3	17.4 18.4 21.0 22.3 23.3	20.5 26.6 25.4 22.6 22.5	26.3 19.8 28.2 23.7 22.6
	level 2	22.4 22.4 26.2 28.8 26.3	19.1 25.4 25.1 21.8 25.2	34.1 32.6 29.0 29.0 25.7	21.9 28.5 25.8 27.1 24.4

raw data					
	uata	level 1 level 2		rows	
A	level 1	$N_{g1}=10$ $X_{g1}=204.3$ $X_{g1}^2=4226.3$	$N_{g2}=10$ $X_{g2}=238.2$ $X_{g2}^{2}=5741.4$	N _{r1} =20 X _{r1} =442.5	
	level 2	$N_{g3}=10$ $X_{g3}=242.7$ $X_{g3}^2=5961.34$	$N_{g4}=10$ $X_{g4}=278.1$ $X_{g4}^2=7855.3$	N _{r2} =20 X _{r2} =520.8	
	columns	N _{c1} =20 X _{c1} =447.0	$N_{c2} = 20$ $X_{c2} = 516.3$	$N_T = 40$ $X_T = 963.3$ $X_T^2 = 23784.4$	

Source	SS	df	MS	F	Р
between groups	273.39	1			
rows	153.27	1	153.27	17.67	<.01
columns	120.06	1	120.06	13.84	<.01
interaction	0.06	1	0.06	0.01	ns
within groups (error)	312.31	36	8.68		
TOTAL	585.70	39			

Three-Way ANOVA

What's different about a three-way ANOVA?

Example

- Factors:
 - Gender (Male, Female)
 - Screen Orientation (Horizontal, Vertical)
 - Screen Size (Small, Medium, Large)

Null Hypotheses

- Main effects
 - gender, screen orientation, screen size (no diff)
- Interactions (2-way)
 - gender × screen orientation
 - gender × screen size
 - screen orientation × screen size (no pattern)
- Interactions (3-way)
 - gender × screen orientation × screen size (?)

Three-way Alternate Hypothesis

- Interpretation #1:
 - The main effect of a factor depends on the levels of both of the other two factors

- Interpretation #2:
 - The interaction effect between two factors depends on the level of another

Factor 1

Level 1 Level 2

Level 1 μ_{111} μ_{121} Level 2 μ_{211} μ_{221} Level 3 μ_{311} μ_{321}

Factor 1

		Level 1	Level 2
r 2	Level 1	μ_{112}	μ_{122}
cto	Level 2	μ_{212}	μ_{222}
Га	Level 3	μ_{312}	μ_{322}

Level 1

Level 2

Factor 3

Factorial ANOVA Table

	Degrees of Freedom	Sum of Squares	Mean Square	F
Factor 1				
Factor 2				
Factor 3				
Factor 1 × Factor 2				
Factor 1 × Factor 3				
Factor 2 × Factor 3				
Factor 1 × Factor 2 × Factor 3				
Within Groups				
Total				

Between-Participants vs. Within-Participants

Participant Assignment

Factor 1

		1	
	Į		
)	
C			Ì
	C		
	1	0	
L			

	Level 1 Level 2	
Level 1	N = 10	N = 10
Level 2	N = 10	N = 10
Level 3	N = 10	N = 10

Between Participants

Factor 1

	Level 1	Level 2
Level 1	Group 1	Group 2
Level 2	Group 3	Group 4
Level 3	Group 5	Group 6

Within Participants

Factor 1

	Level 1	Level 2
Level 1	Group 1	Group 1
Level 2	Group 1	Group 1
Level 3	Group 1	Group 1

Mixed Design

Factor 1

	Level 1	Level 2
Level 1	Group 1	Group 2
Level 2	Group 1	Group 2
Level 3	Group 1	Group 2

How does this change the math?

T-test

Independent Variance

variability =
$$\sqrt{\frac{\sigma_T^2 + \sigma_P^2}{n_T + n_P}}$$

Paired Variance

One-Way ANOVA

Independent

	Degrees of Freedom	Sum of Squares	Mean Square	F
Between Groups				
Within Groups				
Total				

Repeated Measures

	Degrees of Freedom	Sum of Squares	Mean Square	F
Factor				
Subjects				
Error (Factor × Subjects)				
Total				MaykHanaak

February 15, 2008

Slides by Mark Hancock

Two-Way ANOVA

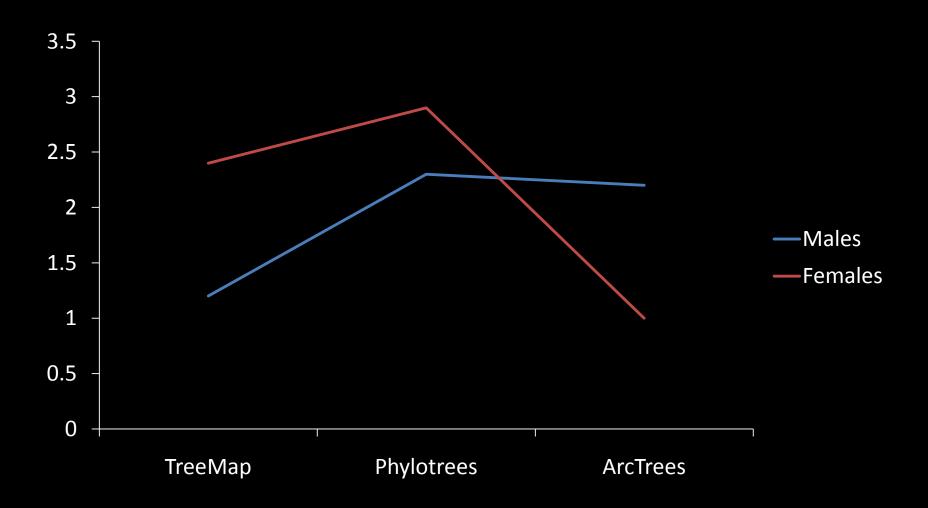
	Degrees of Freedom	Sum of Squares	Mean Square	F
Subjects				
Factor 1				
Factor 1 × Subjects				
Factor 2				
Factor 2 × Subjects				
Factor 1 × Factor 2				
Factor 1 × Factor 2 × Subjects				
Total				

Post-hoc Analysis

Main Effects

- Main effect for factor with two levels
 - No need to do post-hoc

- Main effect for factor with >2 levels
 - Same as one-way ANOVA
 - Pairwise t-tests


How do we (correctly) interpret the results when there's an interaction effect?

Example

 There is a significant interaction between gender and technique.

 example answer: men were quicker with TreeMaps than with Phylotrees and ArcTrees, but women were quicker with ArcTrees than with Phylotrees and TreeMaps.

Example

Post-hoc Tests

- For each level of one factor
 - pairwise comparisons of each level of the other

Hold level of one factor constant

Three-Way Interactions

Much more difficult to interpret

 Same strategy: hold levels of two factors constant and perform pairwise comparisons

Alternate strategy: don't bother (use graphs)