Thursday, Apr 23
3:30-5:30pm
ES 443 (Here)

Slides by Mark Hancock

March 30, 2009
aren 2 (adapted from notes by Craig Schock)

Design Patterns Summary

* Introduction

Structure of Design Patterns

Categories of Design Patterns

Singleton Pattern

Strategy Pattern

Slides by Mark Hancock

March 30, 2009
ren (adapted from notes by Craig Schock)

3/30/2009

By the end of this lecture, you V_/iII be able to

describe what a is.

You will also be able to identify a design
pattern and a design pattern.

March 30, 2009 1«3(]3ptesc‘{‘Cf‘\e;\w:)vm’;izlkbbaé];?gkSchotk)

“Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use the solution a million times over.”

Christopher Alexander (Architect)
A Pattern Language, Oxford University Press, 1977

Slides by Mark Hancock
March 30, 2009
e (adapted from notes by Craig Schock)

3/30/2009

3/30/2009

Discussion:
What is knowledge and understanding?
How does it relate to analysis and Design?

Slides by Mark Hancock

March 2 .
arch 30, 2009 (adapted from notes by Craig Schock)

Analytic
Model

Abstraction of Abstraction of

Slides by Mark Hancock

March 30, 2009 (adapted from notes by Craig Schock)

How does this quote apply to our
understanding of analysis and design?

“Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use the solution a million times over.”

Christopher Alexander (Architect)
A Pattern Language, Oxford University Press, 1977

Slides by Mark Hancock
March 30, 2009 (adapted from notes by Craig Schock) ’

Analytic

Problem

Model

Has Has Has

Detats J Reduction 3 et J Reduction 3 Details [Recucion S parterns 2

Slides by Mark Hancock
March 30, 2009 (adapted from notes by Craig Schock) 8

3/30/2009

How can Design Patterns be applied within multiple
contexts?

What is your responsibility as a designer/programmer
when you use design patterns?

What work has been done for you, what work has not
been done?

Slides by Mark Hancock

March 30, 2009
aren 2 (adapted from notes by Craig Schock)

Structure of Design Patterns

* Name

Problem they solve

Solution

— elements, relationships, responsibilities,
collaborations

* Consequences
— constraints, tradeoffs

Slides by Mark Hancock

10
(adapted from notes by Craig Schock)

March 30, 2009

3/30/2009

From Design Patterns Textbook

e Pattern name and * Participants

Classification e Collaborators
* Intent » Consequences
* Also Known As * Implementation
* Motivation » Sample Code
* Applicability Known Uses
* Structure * Related Patterns

Categories of Design Patterns

* Creational
e Structural
* Behavioural

3/30/2009

Singleton Design Pattern

public class Singleton
{

private static Singleton theInstance = null;

// instance variables defined here

public static Singleton getInstance ()

{
if (theInstance == null)

{
}

return thelnstance;

theInstance = new Singleton();

}

private Singleton ()
{
}

// instance methods implemented here.

Slides by Mark Hancock
March 30, 2009 13
aren = (adapted from notes by Craig Schock) 2

Strategy Design Pattern

public abstract class AssertIA

{
private static AssertIA current
= new AssertIANormal () ;
public static void set (AssertIA assertion)
{
if (assertion != null)
{
current = assertion;
}
}
// cont'd on next slide
March 30, 2009 Slides by Mark Hancock 14

(adapted from notes by Craig Schock)

3/30/2009

Strategy Design Pattern (cont’d)

public static void assertTrue (boolean assertion,
String message)

{
current.assertTruelmpl (assertion, message);

}

public static void assertFalse (boolean assertion,
String message)

{

current.assertFalselImpl (assertion, message);

}

public abstract void assertTruelImpl (boolean cond,
String message) ;

public abstract void assertFalseImpl (boolean cond,
String message) ;

Slides by Mark Hancock
March 30, 2009 15
aren = (adapted from notes by Craig Schock)

Strategy Design Pattern (cont’d)

public class AssertIANormal extends AssertIA
{
public void assertTruelImpl (boolean assertion,
String errorMessage)
{
if (!assertion)
throw new IllegalArgumentException(errorMessage);

public void assertFalselImpl (boolean assertion,
String errorMessage)

if (assertion)
throw new IllegalArgumentException(errorMessage);

Slides by Mark Hancock
March 30, 2009 . 16
e ! (adapted from notes by Craig Schock)

3/30/2009

Strategy Design Pattern (cont’d)

public class AssertIADebug extends AssertIA
{
public void assertTruelImpl (boolean assertion,
String errorMessage)
{

System.out.println ("Assert True: " +

assertion + " " + errorMessage);
if (!assertion)
throw new IllegalArgumentException(errorMessage);

}

public void assertFalseImpl (boolean assertion,
String errorMessage)
{

System.out.println ("Assert False: " +

assertion + " " + errorMessage);
if (assertion)
throw new IllegalArgumentException(errorMessage);

Slides by Mark Hancock
(adapted from notes by Craig Schock)

March 30, 2009

17

References

The material in these notes is based on Design Patterns:

Elements of Reusable Object-Oriented Software by Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides. Addison-
Wesley, 1995.

Slides by Mark Hancock
March 30, 2009 .
e (adapted from notes by Craig Schock)

18

3/30/2009

Assignment #4 Discussion

Slides by Mark Hancock

March 30, 2009 19
arens (adapted from notes by Craig Schock)
* HCI
* Dem
emo
s | a a
March 30, 2009 Slides by Mark Hancock 20

(adapted from notes by Craig Schock)

3/30/2009

10

