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Design Patterns Summary

* Introduction

Structure of Design Patterns

Categories of Design Patterns

Singleton Pattern

Strategy Pattern
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By the end of this lecture, you V\_/iII be able to

describe what a is.

You will also be able to identify a design
pattern and a design pattern.
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“Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use the solution a million times over.”

Christopher Alexander (Architect)
A Pattern Language, Oxford University Press, 1977
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Discussion:
What is knowledge and understanding?
How does it relate to analysis and Design?
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Analytic
Model

Abstraction of Abstraction of
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How does this quote apply to our
understanding of analysis and design?

“Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use the solution a million times over.”

Christopher Alexander (Architect)
A Pattern Language, Oxford University Press, 1977
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How can Design Patterns be applied within multiple
contexts?

What is your responsibility as a designer/programmer
when you use design patterns?

What work has been done for you, what work has not
been done?
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Structure of Design Patterns

* Name

Problem they solve

Solution

— elements, relationships, responsibilities,
collaborations

* Consequences
— constraints, tradeoffs
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From Design Patterns Textbook

e Pattern name and * Participants

Classification e Collaborators
* Intent » Consequences
* Also Known As * Implementation
* Motivation » Sample Code
* Applicability  Known Uses
* Structure * Related Patterns

Categories of Design Patterns

* Creational
e Structural
* Behavioural
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Singleton Design Pattern

public class Singleton
{

private static Singleton theInstance = null;

// instance variables defined here

public static Singleton getInstance ()

{
if (theInstance == null)

{
}

return thelnstance;

theInstance = new Singleton();

}

private Singleton ()
{
}

// instance methods implemented here.
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Strategy Design Pattern

public abstract class AssertIA

{
private static AssertIA current
= new AssertIANormal () ;
public static void set (AssertIA assertion)
{
if (assertion != null)
{
current = assertion;
}
}
// cont'd on next slide
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Strategy Design Pattern (cont’d)

public static void assertTrue (boolean assertion,
String message)

{
current.assertTruelmpl (assertion, message);

}

public static void assertFalse (boolean assertion,
String message)

{

current.assertFalselImpl (assertion, message);

}

public abstract void assertTruelImpl (boolean cond,
String message) ;

public abstract void assertFalseImpl (boolean cond,
String message) ;
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Strategy Design Pattern (cont’d)

public class AssertIANormal extends AssertIA
{
public void assertTruelImpl (boolean assertion,
String errorMessage)
{
if (!assertion)
throw new IllegalArgumentException(errorMessage);

public void assertFalselImpl (boolean assertion,
String errorMessage)

if (assertion)
throw new IllegalArgumentException(errorMessage);
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Strategy Design Pattern (cont’d)

public class AssertIADebug extends AssertIA
{
public void assertTruelImpl (boolean assertion,
String errorMessage)
{

System.out.println ("Assert True: " +

assertion + " " + errorMessage);
if (!assertion)
throw new IllegalArgumentException(errorMessage);

}

public void assertFalseImpl (boolean assertion,
String errorMessage)
{

System.out.println ("Assert False: " +

assertion + " " + errorMessage);
if (assertion)
throw new IllegalArgumentException(errorMessage);
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Assignment #4 Discussion
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