
Java I/O Summary

• File class

– Is a name for information on the hard disk

– Can use this class to create, delete, list files, etc.

• Scanner class

– Simple class for reading text from a file

• Byte Streams & Character Streams

• Filter Streams

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

By the end of this lecture, you will be able to use
the File class and Scanner class to read data from
text files in your programs.

You will also be able to use byte & character
streams to read and write data using different
encodings.

You will also be able to read and write objects
to/from a file.

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

When your program ends, what happens to all
of the information you had in memory?

When your computer shuts down, what
happens to all of your work (e.g., documents,
music, photos, etc.)?

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

Where does the information get stored:

a) when you run your program

b) when you turn off your computer?

File

• Most operating systems use the metaphor of a
file to represent stored information.

• Files are usually stored in a hierarchy within
the operating system.

• A file is just a name that any program can use
to access a particular part of the hard disk.

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

File class

• In Java, there is a class that encapsulates the
information about a particular file on the hard
disk and lets you do operations on that file.

• Exercise: look at the File class in the Java API

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

Exercise: create a program that lists all of the
files in the directory named “Documents”.

String[] list()
Returns an array of strings naming the files and

directories in the directory denoted by this abstract
pathname.

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

When your favourite music player (e.g.,
iTunes) plays an mp3 file, how does it get the
information that it contains?

Where does it put the information?

Scanner

• The Scanner class is one of the simplest ways
in Java to read textual data from a file.

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Scanner

• Two constructors you can already use:

– one takes a File

– one takes a String

• Methods:

– hasNext()

– next(), nextInt(), nextFloat(), etc.

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

Did anyone look at the getFile method
provided in Assignment #3?

In A3Helper.java...

public static List<String> getFile(String filename)
{
try
{

Scanner scanner = new Scanner(new File(filename));

ArrayList<String> list = new ArrayList<String>();
while (scanner.hasNext())
{
String nextWord = scanner.next();
nextWord = nextWord.replaceAll("[^A-Za-z']", "");
if (nextWord.length() > 0)
{
list.add(nextWord);

}
}

return list;
}
catch (Exception x)
{

return null;
}

}

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

Exercise: create a program that reads a list of
floating-point numbers from a file called
“numbers.txt” into a LinkedList.

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

In what form is the information in
“numbers.txt” stored on the computer?

Streams

• A series of bytes that we can read or write

• Reading
– can read each byte from left to write

– can read until we reach the end of the stream

• Writing
– bytes stored in the order they are written

– can write until the operating system stops us

• Can do both at the same time (but it requires
special functionality)

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

Byte Streams

• The unit being read or written is a byte

• Two important parent classes:

– InputStream

– OutputStream

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

InputStream

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

InputStream

ByteArrayInputStream

ObjectInputStream

FileInputStream

PipedInputStream

SequenceInputStream

InputStream methods

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

Method Description
int read() Reads a single character, returns as an integer

int read(byte[] buffer)
Reads bytes from stream and places them into the buffer. The maximum
number of bytes read will be equal to the size of the buffer. This method
returns the number of bytes read

int read(byte[] buffer,
int offset, int length)

Reads up to length bytes and places them into the buffer at location
buffer[offset]. This method returns the number of bytes read

int available() The number of bytes which can be read without blocking

long skip (long n) This method skips over n bytes in the stream

close()
Closes the stream and releases any system resouces associated with the
stream

boolean
markSupported()

Returns true if this stream supports the mark and reset methods

mark (int readlimit)
Marks the current location within the stream. The readlimit parameter
indicates how many bytes can be read before the mark becomes invalidated

reset() Repositions the stream to the location set with the last call to mark.

InputStream subclasses

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

Class Description

ByteArrayInputStream

The constructor for this class is provided with a byte array. This byte array
contains the bytes which will be provided by the stream. This class is useful
if the programmer wishes to access a byte array using the stream interface
(i.e. reading sequential bytes)

ObjectInputStream
This class takes another InputStream as a constructor parameter. It reads
bytes from the input stream and interprets them as Serialized
Objects (which is covered in more detail later).

SequenceInputStream

Constructor takes multiple InputStreams and allows logical concatenation
of the streams. When one stream ends, reading continues from the next,
and so on. The program is unaware that the stream from which data is
being read changes.

FileInputStream
This is the most commonly used InputStream. The constructor takes a
filename, File object or FileDescriptor as a parameter. Data read from this
stream comes from the file identified in the constructor.

PipedInputStream
Connects to an Instance of PipedOutputStream. This provides a one-way
stream through which two threads may communicate. Note: Threading
hasn't been covered in this course yet.

OutputStream

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

OutputStream

ByteArrayOutputStream

ObjectOutputStream

FileOutputStream

PipedOutputStream

OutputStream methods

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Method Description

void write(int data) Writes the data as a byte

void write(byte[] buffer)
Writes all of the bytes contained within
the buffer to the stream

void write(byte[] buffer, int offset, int length)
writes length bytes to the stream starting
at point buffer[offset]

void flush()
Flushes the OutputStream and forces any
buffered output to be written to the
stream

void close()
Closes the stream and releases any
resources associated with the stream

OutputStream subclasses

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

Class Description

ByteArrayOutputStream
All bytes written to this stream will be stored in a byte array.
This array can be recovered by using the toByteArray()
method

FileOutputStream

Most commonly used OutputStream. The constructor takes a
filename, File object or FileDescriptor object as a parameter.
All bytes written to this stream will be written to the
underlying file. Has constructors which indicate that new data
written to the file should be appended to the end of the file.

ObjectOutputStream
The constructor for this stream takes another stream as a
parameter. Programmers can serialize objects by writing them
to this stream using the writeObject() method.

PipedOutputStream
Connects to an instance of PipedInputStream to provide a
one-way communication stream through which 2 threads may
communicate

Limitations

• Good for ASCII encodings of characters

• Reading/writing unicode characters requires
extra effort

– e.g., internationalized character sets

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

Character Streams

• Unit being read or written is a (unicode)
character

• Two important parent classes

– Reader

– Writer

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

Does it make sense to read in some bytes as if
they were characters?

Conversion Classes

• InputStreamReader

– converts an InputStream into a Reader

• OutputStreamWriter

– converts an OutputStream into a Writer

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

Reader

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

Reader

CharArrayReader

BufferedReader

FileReader

PipedReader

StringReader

InputStreamReader

Reader methods

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

Method Description
int read() reads a character and returns it as an integer (only 16 bits are valid)

read (char[] buffer) reads characters into the array up to the length of the array

read (char[] buffer, int
offset, int length)

reads length characters into a character array starting at poing
buffer[offset]

close()
closes the stream and releases any resources associated with the
Reader

boolean ready() returns true if the next call to read will not result in a block

boolean markSupported() returns true if this Reader supports the mark() and reset() operations

mark(int readAheadLimit) mark the present location in the stream.

reset() resets the stream to the location previously set with mark()

skip (long n) skips n characters in the stream

Reader subclasses

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

Class Description

PipedReader
Used to create a one-way pipe between threads. A PipedReader
object represents the receiving side of the pipe

BufferedReader
Provides a mechanism for reading characters from an input source
while buffering the characters so that more efficient reading can
occurr

CharArrayReader
Similar to ByteArrayInputStream. Used so that a character array
can provide the data for a Reader. This is useful if the programmer
wishes to read from a Character Array using the stream interfaces.

StringReader
Similar to the CharArrayReader where the data source is a String
object.

InputStreamReader
An InputStreamReader is a bridge from byte streams to character
streams: It reads bytes and decodes them into characters using a
specified character set.

FileReader A convenience class for reading textfiles.

Writer

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

Writer

CharArrayWriter

BufferedWriter

FileWriter

PipedWriter

StringWriter

OutputStreamWriter

Writer methods

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

Method Description

write(int c)
writes the character to the stream. Note that even though the
parameter is an integer, only 16 bits are written to the stream

write(String s) writes the String to the stream

write(char[] buffer) writes the buffer to the stream

write (String s, int offset, int length)
write length characters from the specified String starting at
the specified offset

flush()
forces any characters currently being buffered to be written to
the stream

close()
closes the stream and releases any resources associated with
the stream

Writer subclasses

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

Class Description

PipedWriter
Used in conjunction with PipedReader to create a one-way
communication between two threads.

BufferedWriter
Writes text to a character-oriented stream while buffering
characters to provide for efficiency

CharArrayWriter
Writes characters to a character array which can be recovered
using the toCharArray() or toString() methods

FileWriter Convenience class for writing character files (text)

StringWriter
Writes characters to a StringBuffer which can be recovered using
the toString() method

OutputStreamWriter
Bridge class between character-oriented streams and byte-
oriented streams

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

Exercise: create a method that writes out the
contents of an ArrayList<String> to a file using
the FileWriter class.

Filter Streams

• Similar to pipes on the command line

– the output of one stream is the input of another

– each filter modifies the data in some manner

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

Filter Streams

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

Class Description

DataInputStream read primitive data types from an underlying input stream

DataOutputStream writes primitive data types to an underlying output stream

PushbackInputStream Allows the ability to push read data back onto the stream

GZIPInputStream reads compressed data in the GZIP format

GZIPOutputStream writes compressed data to the GZIP format

ZipInputStream reads compressed data in the Zip format

ZipOutputStream writes compressed data to the Zip format

PushbackReader Allows the ability to push read data back onto the reader

Example

import java.io.*;
import java.util.zip.*;

public class CompressProgram
{
public static void main(String[] args) throws IOException
{

File file = new File("zipped-text.zip");
FileOutputStream fos = new FileOutputStream(file);
ZipOutputStream zos = new ZipOutputStream(fos);
OutputStreamWriter osw = new OutputStreamWriter(zos);
BufferedWriter writer = new BufferedWriter(osw);

zos.putNextEntry(new ZipEntry("text.txt"));

writer.write("Line one");
writer.newLine();
writer.write("Line two");
writer.newLine();

writer.close();
}

}

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
37

Discussion: How would you store an object
that you created in a file (e.g., a Tag Cloud)?

Serializable interface

• An interface with no methods that flags any
class as something that can be written to a file

• Use ObjectInputStream’s readObject method
and ObjectOutputStream’s writeObject
method to read/write objects

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
38

Example

public class TagCloud implements Serializable

{

// Document must also implement Serializable

private Document document;

// ...

}

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
39

Exercise: make this Serializable

public class PeriodicTable

{

private HashMap<String, Atom> atomMap;

// ...

}

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
40

Java I/O Summary

• File class

– Is a name for information on the hard disk

– Can use this class to create, delete, list files, etc.

• Scanner class

– Simple class for reading text from a file

• Byte Streams & Character Streams

• Filter Streams

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
41

Next Class

• Design Patterns

March 25, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
42

