
3/18/2009

1

JUnit Summary

• Test methods (@Test)

• Testing exceptions

• Common known states (@Before)

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

By the end of this lecture you will be able to
implement unit tests using JUnit in Java.

3/18/2009

2

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

What steps are involved in creating a unit test?

Unit Test

• Place objects in an initial known state.

• Send a message to an object

• Test the resulting state against what you
would expect

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

3/18/2009

3

Example: Atom
public class Atom {

private String symbol;

private int number;

private float weight;

public Atom(String symbol, int number, float weight) {
this.symbol = symbol;
this.number = number;
this.weight = weight;

}

public String getSymbol() {
return symbol;

}

public float getWeight() {
return weight;

}

public int getNumber() {
return number;

}
}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

Exercise: Write a method that would setup the
initial know state using the Atom constructor.

3/18/2009

4

@Test

• To create a unit test in JUnit, just add @Test
before your method

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

Example

import org.junit.*;

public class UnitTester

{

@Test

public void testAtomConstructor()

{

Atom atom = new Atom("C", 6, 12.01f);

}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

3/18/2009

5

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

How do we know whether the test was
successful?

assertTrue & assertFalse

• There are two methods in the Assert class
(assertTrue and assertFalse) that test whether
a boolean expression is true or false
respectively.

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

3/18/2009

6

Example

import org.junit.*;

public class UnitTester

{

@Test

public void testAtomConstructor()

{

Atom atom = new Atom("C", 6, 12.01f);

Assert.assertTrue(atom.getSymbol().equals("C"));

Assert.assertTrue(atom.getNumber() == 6);

Assert.assertTrue(atom.getWeight() == 12.01f);

}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

Example: common shortcut

import org.junit.*;

import static org.junit.Assert.*;

public class UnitTester

{

@Test

public void testAtomConstructor()

{

Atom atom = new Atom("C", 6, 12.01f);

assertTrue(atom.getSymbol().equals("C"));

assertTrue(atom.getNumber() == 6);

assertTrue(atom.getWeight() == 12.01f);

}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

3/18/2009

7

Running JUnit Tests

> javac <tester>.java

> java org.junit.runner.JUnitCore <tester>

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

Example: Molecule

import java.util.HashMap;
import java.util.Scanner;
import java.util.Map;

public class Molecule
{

private HashMap<Atom,Integer> atomMap;

public Molecule()
{

atomMap = new HashMap<Atom,Integer>();
}

public void parse(PeriodicTable table, String molecularFormula)
{

// ...
}

public float getMass()
{

// ...
}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

3/18/2009

8

Example: PeriodicTable

import java.util.ArrayList;

public class PeriodicTable
{

private ArrayList<Atom> atoms;

public PeriodicTable()
{

atoms = new ArrayList<Atom>();
}

public void addAtom(Atom atom)
{

// ...
}

public Atom getAtom(String symbol)
{

// ...
}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

Exercise: Write a method that uses JUnit to
test the parse method in the Molecule class.

3/18/2009

9

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

How would you test for incorrect input to the
parse method? E.g., “hh”

Exception Tests

• If a sequence of steps should result in a
particular kind of exception, you can check for
this.

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

3/18/2009

10

Example

@Test(expected=IllegalArgumentException.class)

public void testInvalidParseString()

{

PeriodicTable table = new PeriodicTable();

Molecule molecule = new Molecule();

Atom hydrogen = new Atom("H", 1, 1.01f);

Atom oxygen = new Atom("O", 8, 16.00f);

table.addAtom(hydrogen);

table.addAtom(oxygen);

molecule.parse(table, "hh");

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

What if the initial state is the same for
multiple tests?

3/18/2009

11

@Before

• Any method with @Before before it will be
run before the @Test methods.

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Example

public class UnitTester
{
Atom atom;
Atom hydrogen;
Atom oxygen;

PeriodicTable table;
Molecule molecule;

@Before
public void initialize()
{
atom = new Atom("C", 6, 12.01f);
hydrogen = new Atom("H", 1, 1.01f);
oxygen = new Atom("O", 8, 16.00f);

table = new PeriodicTable();
molecule = new Molecule();

table.addAtom(hydrogen);
table.addAtom(oxygen);

}

// ...

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

3/18/2009

12

JUnit Summary

• Test methods (@Test)

• Testing exceptions

• Common known states (@Before)

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

Midterm Review (in Java)

3/18/2009

13

Question #1

• (15 %) Identify 5 differences in syntax
between python and Java. Describe each with
at least one sentence and provide an example
which shows both the Java and Python
versions.

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

Question #2

• (5 %) Why is it not necessary to indent your
code in Java?

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

3/18/2009

14

Question #3

(10 %) Consider the following program and its

output:
public class SizeProgram

{

public static void main()

{

System.out.println("char:\t" + Character.SIZE / 8);

System.out.println("int:\t" + Integer.SIZE / 8);

System.out.println("double:\t" + Double.SIZE / 8);

System.out.println("short:\t" + Short.SIZE / 8);

System.out.println("Object:\t" + 4);

}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

Question #3 (cont’d)

Output:

char: 1

int: 4

double: 8

short: 2

Object: 4

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

3/18/2009

15

Question #3 (cont’d)

Statement Number of Bytes

int i = 5;

char[] str = new char[90];

Double dPtr = null;

double[] numbers = { 3.1, 4.15, 9.2 };

short s = 65000;

Short sPtr = new Short();

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

Question #4
(15 %) Draw a table of all the variables and how they
change throughout the following program:
public class QuestionFour
{

public static void main()
{

int i;
int j;
int result = 0;
j = 5;

for (i = 0; i < 10; i++)
{

result += i++ * ++j;
}

System.out.println("i is " + i);
System.out.println("j is " + j);
System.out.println("result is " + result);

}
}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

3/18/2009

16

Question #5
(15 %) Complete the following method.
public class QuestionFive
{
/*
* Method: insert
* Purpose: This function inserts an element into an
* array of integers.
*
* Parameters:
* array - the array of integers
* size - the number of elements currently in the array
* elem - the element to insert into the array
* i - the index of the element to insert the new element
* before in the array.
*
* Precondition:
* 'size' is less than the maximum size of the array.
*
* Postcondition:
* The 'array' should be unchanged from 0 to i - 1 and all
* of the elements from i upward should be shifted to the
* right. Element i should now be 'elem'.
*/

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

Question #6

(10 %) In object-oriented programming, we introduced
the concept of mutability. Is the following structure in
Java mutable or immutable? Why?

public class Location

{

public int longitude;

public int latitude;

};

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

3/18/2009

17

Question #7

• (10 %) What are the two main components
that make up an abstract data type (ADT)?

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

Question #8

(20 %) Consider the following program. Draw a
diagram of memory for when the program reaches
the marked point in the code (including the stack,
heap, and all global variables). Make sure each
variable on the stack and in the global variable
space is labeled and that the value of each variable
is specified (when known). You may use curly
braces ({) to name a group of variables, arrows (→)
to represent references, and question marks (?) to
represent uninitialized data. Also label the part of
memory associated with each function.

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

3/18/2009

18

Question #8 (Point.java)

public class Point

{

public int x;

public int y;

public Point() {}

public Point(int x, int y)

{

this.x = x;

this.y = y;

}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

Question #8 (QuestionEight.java)
public class QuestionEight
{

public static final Point g = new Point(5, 3);

public static Point addPoints(Point p1, Point p2)
{

Point result = new Point();
result.x = p1.x + p2.x;
result.y = p1.y + p2.y;

return result;
}

public static void main(String[] args)
{

Point a;
Point b;

a = new Point();
a.x = 4;
a.y = 5;

b = add_points(g, a);
}

}

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

Here

3/18/2009

19

Next Class

• Java I/O

March 18, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
37

