
3/11/2009

1

Lecture 15 Summary

• Collections Framework

– Iterable, Collections

– List, Set

– Map

• Collections class

• Comparable and Comparator

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

By the end of this lecture, you will be able to
use different types of Collections and Maps in
your Java code.

You will also be able to use Comparables and
Comparators to simplify many algorithms.

3/11/2009

2

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

In Python, what are lists, dictionaries, and
tuples?

What benefit do they provide?

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

How would we get the same benefit in C?

3/11/2009

3

Collections

• Store a bunch of stuff

• In Python, how this stuff is stored is hidden
from the programmer

• In C, have complete control over how stuff is
stored (but we have to think about it)

• In Java, we have a choice – why?

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

Collections

• Actually, we have this choice in Python, C++,
and Java

• Object-oriented programming provides a way
of hiding when we want to (through
inheritance)

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

3/11/2009

4

Collection Framework in Java

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

Iterable

Collection

List Set

SortedSet

Iterable

public interface Iterable

{

public Iterator iterator();

}

• What does this mean about anything that is an
Iterable?

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

3/11/2009

5

Collection Framework in Java

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Iterable

Collection

List Set

SortedSet

Collection

public interface Collection extends Iterable
{

public boolean add(o);
public boolean addAll(Collection c);
public void clear();
public boolean contains(Object o);
public boolean containsAll(Collection c);
public boolean equals(Object o);
public int hashCode();
public boolean isEmpty();
public Iterator iterator();
public boolean remove(Object o);
public boolean removeAll(Collection c);
public boolean retainAll(Collection c);
public int size();
public Object[] toArray();

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

3/11/2009

6

Collection

Method Description

add Add an entity to the collection

clear Clear all entities from the collection

contains Determine if the collection contains a specific entity

isEmpty Indicates whether the Collection is empty or not

iterator
Provides an iterator which can be used to iterate through the entities
contained within the collection

remove Removes a specific entity from the Collection

size Returns the number of entities currently contained within the Collection

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

How can collections be accessed?

public interface Collection extends Iterable
{

public boolean add(o);
public boolean addAll(Collection c);
public void clear();
public boolean contains(Object o);
public boolean containsAll(Collection c);
public boolean equals(Object o);
public int hashCode();
public boolean isEmpty();
public Iterator iterator();
public boolean remove(Object o);
public boolean removeAll(Collection c);
public boolean retainAll(Collection c);
public int size();
public Object[] toArray();

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

3/11/2009

7

Collection Framework in Java

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

Iterable

Collection

List Set

SortedSet

List

public interface List extends Collection

{

public void add(int index, Object element);

public boolean addAll(int index, Collection c);

public Object get(int index);

public int indexOf(Object o);

public int lastIndexOf(Object o);

public ListIterator listIterator();

public ListIterator listIterator(int index);

public Object remove(int index);

public Object set(int index, Object element);

public List<E> subList(int fromIndex, int toIndex);

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

3/11/2009

8

List

Method Description

add(int index, Object element) Insert an object into the list at the specified index

get(int index) Get a reference to the object at the specified index

indexOf(Object o) Return the index of a specific object within the list

lastIndexOf(Object o) Return the last index of a specific object within the list

listIterator()
Get an iterator which allows you to iterate over the list in
forward or reverse direction

listIterator(int index)
Get an iterator which allows you to iterate over the list in
forward or reverse direction starting at the specified
location

remove(int index) Remove the object at the specified index

set(int index, Object element)
Replace the object at a specific index with the newly
specified element

subList(int fromIndex, int toIndex) Obtain a sublist based on specified indices

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

Classes that implement List

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

AbstractCollection

AbstractList

AbstractSequentialList ArrayList Vector

LinkedList

List
<<Interface>>

3/11/2009

9

Classes that implement List

• This diagram has 3 abstract list classes and 3
concrete list classes

• ArrayList & Vector

– internally implemented with arrays

– their difference is beyond the scope of what you
know so far

• LinkedList

– internally implemented with linked lists

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

Exercise

• Create a program in Java that adds all of the
strings from the command line to an ArrayList.

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

3/11/2009

10

Collection Framework in Java

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

Iterable

Collection

List Set

SortedSet

Set & SortedSet

• Set

– no additional methods

– adds restriction that no duplicate elements may
be added

• SortedSet

– additional methods (e.g., first, last)

– elements have an order

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

3/11/2009

11

HashSet (implements Set interface)

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

AbstractCollection

AbstractSet

HashSet

Set
<<Interface>>

Map Interface

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

Map

SortedMap

3/11/2009

12

Map Interface

public interface Map
{

public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public Set entrySet();
public boolean equals(Object o);
public Object get(Object key);
public int hashCode();
public boolean isEmpty();
public Set keySet();
public Object put(Object key, Object value);
public void putAll(Map t);
public Object remove(Object key);
public int size();
public Collection values();

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

Map
Method Description

clear() Removes all mappings from the map

containsKey(Object key) Returns true if map contains the specified key

containsValue(Object value) Returns true if the map contains the specified value

get(Object key)
Returns the value which corresponds with the specified
key

isEmpty() Returns true if the Map is empty

put(Object key, Object value)
Puts the specified value into the map based on the
specified key. If a previous object was in the map with the
same key, that object is removed and returned

remove(Object key)
Remove the mapping which corresponds with the
specified key

size() Returns the number of mappings within the Map

values() Returns a collection which contains the values in the Map.

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

3/11/2009

13

Classes that implement Map

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

AbstractMap

LinkedHashMap HashMap IdentityHashMap

Map

Exercise

• Create a program that adds the strings from
the command line as (key, value) pairs to a
HashMap.

• E.g.,
> java MyProgram a 5 b 2 c 10 d 6

adds the pairs (a,5), (b,2), (c,10), and (d,6) to the
HashMap.

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

3/11/2009

14

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

How would you choose which class to use?

Example: Your assignment

• When reading in words from a file, what
structure should you use to store those
words?

• What about for your stop list?

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

3/11/2009

15

Data Structures

• CPSC 331 describes in depth

• Beyond the scope of this course

• For your assignments and the exam, you are
expected to know only how to use the data
structures

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

Generics

• A topic far to advanced to be covered in depth

– Introduced in Java 1.5

• Today (without generics):
ArrayList strs = new ArrayList();

• Before Today (with generics):
ArrayList<String> strs = new ArrayList<String>();

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

3/11/2009

16

Generics

• These two statements are equivalent:
ArrayList strs = new ArrayList();

ArrayList<Object> strs = new ArrayList<Object>();

• What would happen if we did this?
strs.add(new String(“I CAN HAS STRIN?”));

String s = strs.get(0);

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

3/11/2009

17

Generics

strs.add(new String(“I CAN HAS STRIN?”));

String s = (String)strs.get(0);

• Using generics removes the need to cast

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

Generics

for (String s : strs)

{

// ...

}

• Using generics allows this kind of for loop

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

3/11/2009

18

Collections Algorithms

• Look in Java API for the Collections class

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

Collections Algorithms
Method Description

Collections.copy(List a, List b) copy all of the elements from one list to another

Collections.frequency(Collection a, Object b) returns the count of elements in the collection equal to b

Collections.max(Collection a)
returns the maximum element within the collection based
on Natural Order

Collections.max(Collection a, Comparator b)
returns the maximum element within the collection as computed
by the specified comparator

Collections.min(Collection a)
returns the minumum element within the collection based
on Natural Order

Collections.min(Collection a, Comparator b)
returns the minimum element within the collection as computed
by the specified comparator

Collections.replaceAll(List a, Object oldVal,
Object newVal)

replaces all instances of oldVal in the list a with newVal

Collections.reverse(List a) reverses the order of the elements in list a

Collections.shuffle(List a) randomly order the elements in the list

Collections.sort(List a) Sort the objects in list a based on Natural Order

Collections.sort(List a, Comparator b)
Sort the objects in list a based on the order computed by
comparator b

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

3/11/2009

19

Comparable & Comparator

• Allows the collection framework to implement
some algorithms

• E.g., sort, max, min, frequency

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
37

Comparable

public interface Comparable<T>

{

public int compareTo(T object);

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
38

3/11/2009

20

Comparable

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
39

Return Value Meaning

<0 (negative integer) This object is less than the specified object (parameter)

0 This object is equal to the specified object (parameter)

>0 (positive integer) This object is greater than the specified object (parameter)

Example: Cards

public class Card implements Comparable<Card>

{

private String suit;

private short value;

// ...

public int compareTo(Card card)

{

return this.value - card.value;

}

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
40

3/11/2009

21

Example: HonestPlayer

public class HonestPlayer extends Player
{

public void passHighestCard(Player player)
{

Card maxCard = null;
for (Card card : getCards())
{

if (maxCard == null)
{

maxCard = card;
}
else if (card.getValue() > maxCard.getValue())
{

maxCard = card;
}

}

removeCard(maxCard);
player.addCard(maxCard);

}
}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
41

Example: HonestPlayer

public class HonestPlayer extends Player

{

public void passHighestCard(Player player)

{

Card maxCard = Collections.max(getCards());

removeCard(maxCard);

player.addCard(maxCard);

}

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
42

3/11/2009

22

Comparator

public interface Comparator<T>

{

public int compare(T o1, T o2);

boolean equals(Object obj);

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
43

Comparator

Return Value Meaning

<0 (negative integer) o1 is less than o2

0 o1 is equal to o2

>0 (positive integer) o1 is greater than o2

• equals must return true if two comparators impose
the same ordering
– typically implemented as: this.equals(obj);

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
44

3/11/2009

23

Example: TrumpComparator

public class TrumpComparator
implements Comparator<Card>

{

private String trump;

public TrumpComparator(

String trump)

{

this.trump = trump;

}

public boolean equals(

Object obj)

{

return this.equals(obj);

}

public int compare(Card c1, Card c2)

{

if (c1.getSuit().equals(c2.getSuit())

return c1.getValue()-c2.getValue();

else if (trump.equals(c1.getSuit()))

return 1;

else if (trump.equals(c2.getSuit()))

return -1;

return 0;

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
45

Example: HonestPlayer

public class HonestPlayer extends Player

{

public void passHighestCard(Player player)

{

Card maxCard = Collections.max(getCards(),

new TrumpComparator("Hearts", "Spades");

removeCard(maxCard);

player.addCard(maxCard);

}

}

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
46

3/11/2009

24

Exercise (for home)

• Think of a card game that you have played
before

• If you don’t remember the rules, look them up

• Write comparator(s) for the card game:

– do you need more than one?

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
47

Lecture 15 Summary

• Collections Framework

– Iterable, Collections

– List, Set

– Map

• Collections class

• Comparable and Comparator

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
48

3/11/2009

25

Next Class

• Unit Testing

March 11, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
49

