
Lecture 14 Summary

• Exceptions vs. Errors

• Exceptions vs. RuntimeExceptions

• try...catch...finally

• throw and throws

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

By the end of this lecture, you will be able to
differentiate between errors, exceptions, and
runtime exceptions.

You will also be able to describe the class
model for exceptions in Java.

You will also be able to create, throw and
catch your own exceptions.

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

What’s the worst/funniest error message
you’ve seen on your computer?

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

How have you handled errors in your
programs so far?

Error Codes

• Did you run into any difficulties using atof?

– what happens when you enter 0?

– what happens when you enter “hello”?

• strtod: sets the value of a global variable
called errno to something other than 0
(depending on the type of error).

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

If you considered all of the possible stuff
someone could type into your program and
handled it “nicely”, what would the code look
like in C?

Reporting Errors (GNOME)

• GNOME Human Interface Guidelines 2.2
– 11.2 Warning and Error Messages:

“A good warning or error message contains two
elements:

1. A brief description of the problem.

2. A list of ways the user can remedy the problem.

Both of these elements should be presented in non-
technical, jargon-free language, unless your target
audience is particularly technically-minded.”

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

• Windows User Experience Interaction
Guidelines (Windows Vista)

“Effective error messages inform users that a problem
occurred, explain why it happened, and provide a
solution so users can fix the problem.”

Reporting Errors (Vista)

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Reporting Errors (Apple)

• Apple Human Interface Guidelines

“Provide useful error messages to users when
something does go wrong. An error message should
clearly convey what happened, why it happened, and
the options for proceeding.”

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

Dealing with Errors

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

Function
1

Function
2

Function
3

Error

Where would you put the code to handle the error?

Possibilities

• Handled in Function 3:

– Advantage: know specific reason for error

– Disadvantage: don’t know context

• Handled in Function 1:

– Advantage: know about context

– Disadvantage: need code added to Functions 1 &
2 to pass back info about reason for error

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

Exceptions

• Basic idea:
– Program flows according to usual constructs

(sequential, conditional, iterative execution, etc.)

– Something exceptional happens

– Interrupt normal behaviour by throwing an
exception (an object with error information)

– Somewhere (anywhere) up the call stack, this
exception can be caught and handled

– Transfer control to the catching method (removing
everything below it from the call stack)

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

Throwing an Exception

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

Function
1

Function
2

Function
3

Error

Java Exception Handling Keywords

try

catch

finally

throw

throws

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

Catching an Exception

try

{

// ... some code which might throw an exception

}

catch (Exception x)

{

// ... code which handles the exception

}

finally

{

// ... code which is executed no matter what

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

Example

import java.util.ArrayList;

public class ExceptionExample

{

public static void main(String[] args)

{

ArrayList<String> strs = new ArrayList<String>();

String s = strs.get(100);

System.out.println(s);

}

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

What will happen?

Example

import java.util.ArrayList;

public class ExceptionExample

{

public static void main(String[] args)

{

try

{

ArrayList<String> strs = new ArrayList<String>();

String s = strs.get(100);

System.out.println(s);
}

catch (Exception x)

{

System.err.println("An error occured");

System.err.println(x.getMessage());

x.printStackTrace(System.err);

}

}

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

Exceptions are Objects

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

Throwable

Exception

…

Example: Out of Bounds

import java.util.ArrayList;

public class ExceptionExample

{

public static void main(String[] args)

{

try

{

ArrayList<String> strs = new ArrayList<String>();

String s = strs.get(100);

System.out.println(s);
}

catch (ArrayIndexOutOfBoundsException x)

{

System.err.println("An error occured");

System.err.println(x.getMessage());

x.printStackTrace(System.err);

}

}

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

Example: Parsing Integers

public class Number
{

public static void main(String[] args)
{

int count = 0;

while(count < args.length)
{

try
{

int x = Integer.parseInt(args[count]);
System.out.println("Args[" + count + "] = " + x);

}
catch(NumberFormatException x)
{

System.err.println("Invalid parameter:" + count);
System.err.println(x.getMessage());
System.err.println("Stack trace:");
x.printStackTrace(System.err);

}
count++;

}
}

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Errors vs. Exceptions

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

Throwable

Error Exception

Errors vs. Exceptions

• Errors

– Something the programmer should not
reasonably be expected to recover from.

• Exceptions

– Something the programmer should
reasonably be expected to recover from

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

Exercise: Error or Exception

• Read data outside array boundary

• Heap is full (out of memory)

• Null pointer

• File does not exist

• Hard disk failure

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

Catching Multiple Exceptions

try

{

// ... some code which might throw an exception

}

catch (ExceptionOne x)

{

// ... code which handles ExceptionOne's

}

catch (ExceptionTwo x)

{

// ... code which handles ExceptionTwo's

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

import java.io.*;

public class FileExample

{

public static void main(String[] args)

{

try

{

FileReader reader = new FileReader(args[0]);

int c = reader.read();

reader.close();

}

catch (ArrayIndexOutOfBoundsException e)

{

System.err("Must specify an argument");

}

catch (FileNotFoundException e)

{

System.err("File not found: " + args[0]);

}

catch (IOException e)

{

System.err("Error reading file: " + args[0]);

e.printStackTrace();

}

}

}

Checked vs. Unchecked Exceptions

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

Exception

RuntimeException

…

…

Checked vs. Unchecked Exceptions

• Checked

– Subclasses of Exception that do not inherit from
RuntimeException

– Compiler will complain if uncaught

• Unchecked

– Subclasses of RuntimeException

– Can be ignored by the programmer

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

Exercise

• Lookup ClassCastException in Java API

– Is it checked or unchecked?

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

Creating Exceptions

public class DriverMismatchException

extends Exception

{

public DriverMismatchException(String message)

{

super(message);

}

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

Throwing Exceptions

public class Driver
{

private Car car;

public Driver(Car car)
throws DriverMismatchException

{
if (car.getDriver() != this)
{

throw new DriverMismatchException(
"Car does not match driver");

}

this.car = car;
}

}

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

Creating & Throwing Exceptions

• Creating Exceptions

– Inherit from Exception

– Can inherit from subclass of Exception

• e.g., IllegalArgumentException, RuntimeException

• Throwing Exceptions

– Use throw command

– If checked, requires a throws declaration

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

Example: Constructors

• Has no return value

• If an invalid state is reached, exceptions are a
nice way to handle the error

• Is there another way?

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

Exercise

• Look up one of each of the following:

– an Error

– an unchecked Exception

– a checked Exception

• Draw the class model starting at the
Throwable class.

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

Lecture 14 Summary

• Exceptions vs. Errors

• Exceptions vs. RuntimeExceptions

• try...catch...finally

• throw and throws

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

Next Class

• Collections

March 9, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

