
3/4/2009

1

Lecture 13 Summary

• Assignment 3

• Polymorphism

• Interfaces

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

Assignment 3 Discussion

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

3/4/2009

2

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

By the end of this lecture, you will be able to
distinguish between messages and methods
and to use these words to describe code.

You will also be able to create purely abstract
classes (also called interfaces) in Java.

Polymorphism

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

3/4/2009

3

Exercise: card game

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

Card.java

public class Card
{

private String suit;
private short value;

public Card(String suit, short value)
{

this.suit = suit;
this.value = value;

}

public String getSuit()
{

return suit;
}

public short getValue()
{

return value;
}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

3/4/2009

4

Player.java

public abstract class Player
{

private ArrayList<Card> cards;

public void addCard(Card card)
{

cards.add(card);
}

public void removeCard(Card card)
{

cards.remove(card);
}

public List<Card> getCards()
{

return cards;
}

public abstract void passHighestCard(Player player);
}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

Beginner.java

public class Beginner extends Player

{

public void passHighestCard(Player player)

{

Card card = getCards().get(0);

removeCard(card);

player.addCard(card);

}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

3/4/2009

5

HonestPlayer.java

public class HonestPlayer extends Player
{

public void passHighestCard(Player player)
{

Card maxCard = null;
for (Card card : getCards())
{

if (maxCard == null)
{

maxCard = card;
}
else if (card.getValue() > maxCard.getValue())
{

maxCard = card;
}

}

removeCard(maxCard);
player.addCard(maxCard);

}
}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Cheater.java

public class Cheater extends Player
{

public void passHighestCard(Player player)
{

Card minCard = null;
for (Card card : getCards())
{

if (minCard == null)
{

minCard = card;
}
else if (card.getValue() < minCard.getValue())
{

minCard = card;
}

}

removeCard(maxCard);
player.addCard(maxCard);

}
}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

3/4/2009

6

Language

• so far: “invoke the passHighestCard method
against an instance of a Player object”

• better: “pass the message ‘passHighestCard’
to an instance of a Player object”

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

Our exercise

• I sent the message “passHighestCard” with the
parameter “person to your left/right”
– I can do this without knowing what kind of player you

are!

– The same is true for the compiler

• You received the message “passHighestCard” and
invoked the method with the same name in your
own definition.
– this decision is made at runtime

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

3/4/2009

7

Using the same language, describe…

public class SomeProgram

{

public static void main(String[] args)

{

Animal a = new Dog();

Animal b = new Elephant();

Animal c = new Human();

a.speak();

b.speak();

c.speak();

}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

So what is polymorphism?

• poly = many

• morph = form

• polymorphism = many forms

• When a message is sent, the corresponding
behaviour can take on many forms.

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

3/4/2009

8

Polymorphism Summary

• The compiler knows what kinds of messages can
be sent to what kinds of objects.

• At runtime, when messages are actually sent, the
object that receives the message decides what
method to invoke.

• Polymorphism is the ability for different types of
objects to behave differently for the same
message.

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

Purely Abstract Classes

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

3/4/2009

9

Example

public class ReallyAbstract

{

public abstract int method1();

public abstract int method2();

public abstract String method3();

public abstract float method4();

}

• What will its subclasses have in common?

• What will they not (necessarily) have in common?

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

Purely Abstract Class

• No common instance variables

• No common method implementations

• The only thing in common are the method
signatures.

• In Java, this case is considered to be special
and is called an interface.

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

3/4/2009

10

Example

public interface ReallyAbstract

{

public int method1();

public int method2();

public String method3();

public float method4();

}

• No instance variables allowed

• No method implementations allowed

• abstract keyword unnecessary

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

Using Interfaces

public class Dog extends Animal implements ReallyAbstract
{

public int method1()
{

// ...
}

public int method2()
{

// ...
}

public String method3()
{

// ...
}

public float method4()
{

// ...
}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

3/4/2009

11

Why do this?

• A class can only have one superclass (using the
extends keyword).

• There is no limit to how many interfaces a
class can have.

• Why wouldn’t Java just let you extend from
multiple classes?

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Example

public interface Transportation {

public void forward(int speed);

public void turnLeft(int degrees);

public void turnRight(int degrees);

public void stop();

}

public class Car

implements Transportation {

// ...

}

public class Elephant extends Animal

implements Transportation {

// ... instance variables

// ... instance methods

public void forward(int speed) {

// ...

}

public void turnLeft(int degrees){

// ...

}

public void turnRight(int degrees){

// ...

}

public void stop() {

// ...

}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

3/4/2009

12

Example: sorting cards

public class Card implements Comparable<Card>
{

private String suit;
private short value;

public int compareTo(Card card)
{

if (suit.equals(card.suit))
{

// use the value to decide order
if (value < card.value)

return -1;
else if (value > card.value)

return 1;
else

return 0;
}
else
{

// ... order by suit
}

}
}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

Example: sorting cards

public abstract class Player

{

private ArrayList<Card> cards;

public void sortCards()

{

Collections.sort(cards);

}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

3/4/2009

13

Exercise: what is the output?

public class A {

public void foo() {

System.out.println("A's foo");

}

}

public class B extends A {

public void foo(String bar) {

System.out.println("B's foo " + bar);

}

}

public class C extends B {

public void foo() {

System.out.println("C's foo");

}

}

public class Program {

public static void main(){

A a1 = new A();

A a2 = new B();

A a3 = new C();

B b1 = new B();

B b2 = new C();

C c = new C();

a1.foo();

a2.foo();

a3.foo();

b1.foo();

b2.foo();

c.foo();

c.foo("bar");

}

}

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

Next Class

• Exceptions

March 4, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

