
3/2/2009

1

Lecture 12 Summary

• Inheritance

– Superclasses / subclasses

– Inheritance in Java

– Overriding methods

– Abstract classes and methods

– Final classes and methods

• Multiplicity

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1 March 2, 2009

Slides by Mark Hancock
(adapted from notes by Craig Schock)

2

By the end of this lecture, you will be able to
incorporate inheritance and multiplicity into
your class models.

You will also be able to use inheritance and
override methods in Java.

Process So far...

• Identify objects and create an object model

• Observe commonalities in object model

– objects with the same attributes/behaviour

• Classify common objects into a class model

– remove repetition (number of objects/relations)

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

Additional Step

• Identify objects and create an object model

• Observe commonalities in object model

– objects with the same attributes/behaviour

• Classify common objects into a class model

– remove repetition (number of objects/relations)

• Find commonalities in class model and
abstract them using inheritance.

– this process is called generalization

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

3/2/2009

2

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

In procedural languages, what is the benefit of
dividing your code up into multiple
procedures?

In OO languages, what is the benefit of
classifying objects in your object model?

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

The process of abstraction helps to reduce the
complexity of the problem space.

Generalization is another form of abstraction.

Draw the class model...

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

Mountain
Bike

Wheel

Shocks

Rim Tire

Spokes

Commuter
Bike

Wheel

Rack

Rim Tire

Spokes

Frame

Handle
Bars

Frame

Handle
Bars

Bike
Shop

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

What are the commonalities in the
object model?

What are the commonalities in the
class model?

3/2/2009

3

Inheritance

• A new kind of relationship between classes:

– is-a or is-a-kind-of

• Used to describe a group of classes in an
abstract way

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Example

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

Animal

Dog Elephant Human

Eye

Ear

...

TrunkFur

Terminology

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

Animal

Dog Elephant Human

Superclass

Subclasses

Terminology

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

Animal

Dog Elephant Human

Parent Class

Child Classes

3/2/2009

4

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

Exercise: generalize the bike shop class model.

Java Syntax

public class <subclass> extends <superclass>

{

...

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

Example

Animal.java:

public class Animal {

private Eye leftEye;

private Eye rightEye;

private Ear leftEar;

private Ear rightEar;

}

Dog.java:

public class Dog extends Animal {

private Fur fur;

}

Elephant.java:

public class Elephant extends Animal {

private Trunk trunk;

}

Human.java:

public class Human extends Animal {

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

Which code makes sense?

1. public class MainProgram {

2. public static void main(String[] args) {

3. Animal a = new Dog();

4. Elephant e = new Animal();

5.

6. LinkedList<Animal> animals =

7. new LinkedList<Animal>();

8. animals.add(new Human());

9. animals.add(new Elephant());

10.

11. LinkedList<Dog> dogs =

12. new LinkedList<Dog>();

13. dog.add(new Dog());

14. dog.add(new Human());

15. }

16.}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

3/2/2009

5

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

What if we want a method called ‘speak’ that
plays the right sound for each animal?

Where does this method belong?

Consider the following code...

public class MainProgram

{

public static void main(String[] args)

{

LinkedList<Animal> animals =

new LinkedList<Animal>();

... // fill up the list

for (Animal a : animals)

{

a.speak();

}

}

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

What should happen here?

Overriding Methods

• A subclass can override a method in the
superclass

• Automatically happens by using the same
method signature

– same name

– same parameters

– same return type

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

Example

public class Animal {

...

public void speak() {

...

}

}

public class Dog extends Animal {

...

public void speak() {

playAudioClip("bark.wav");

}

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

3/2/2009

6

Abstract Classes & Methods

• An abstract class is a class that cannot be
instantiated

– No instances can be created

• An abstract method is a method that must be
overridden by any subclass

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Example

public abstract class Animal {

...

public abstract void speak();

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

Reconsider the following code...

public class MainProgram

{

public static void main(String[] args)

{

LinkedList<Animal> animals =

new LinkedList<Animal>();

... // fill up the list

for (Animal a : animals)

{

a.speak();

}

}

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23 March 2, 2009

Slides by Mark Hancock
(adapted from notes by Craig Schock)

24

Can you think of a situation where you would
want to prevent a method from being
overridden?

3/2/2009

7

final

• You can prevent a method from being
overridden by adding the keyword ‘final’.

• You can prevent a class from being inherited
from by adding the keyword ‘final’.

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

Example

public class Security {

public final boolean matchPassword(String password) {

...

}

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

Does the following code make sense?

public abstract final ParentClass {

}

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

Root Classes

• There is a class called Object in Java

• Every class is an Object.

• If you do not specify a superclass through the
extends keyword, Java automatically inherits
from Object

• Object is the root class for Java

• Not all languages have a root class (e.g., C++)

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

3/2/2009

8

Single Inheritance

• Java only allows single inheritance:

– A class can only have one superclass

– This superclass may itself inheret from another
class, and so on, until Object is reached

– Object is the only class with no superclass

• C++ allows for multiple inheritance

– A class in C++ can have many superclasses

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

Inheritance Summary

• Commonalities between classes in the class
model can be abstracted using inheritance.

• Inheritance introduces the is-a relationship to
our class models.

• In Java, a class can inherit from a superclass
using the extends keyword.

• An instance of a subclass can be substituted
for a reference to a superclass

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

Inheritance Summary

• Methods in a superclass can be overridden in a
subclass

• An abstract class cannot be instantiated (only
its non-abstract subclasses can).

• You can prevent a class from being subclassed
or a method from being overridden with the
final keyword.

• Java uses single inheritance and has a root
class called Object.

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

Multiplicity

• The has-a relationship can be further
decomposed:

– has one

– has many

– belongs to one

– belongs to many

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

3/2/2009

9

Multiplicity

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

Document Word

Driver Car

Tree Leaf

Purchase Customer

1 1

1 *

* 1

* *

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

Exercise: add indications in the bike shop class
model for multiplicity.

Lecture 12 Summary

• Inheritance

– Superclasses / subclasses

– Inheritance in Java

– Overriding methods

– Abstract classes and methods

– Final classes and methods

• Multiplicity

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

Next Class

• Polymorphism (theory)

• Interfaces (a.k.a. pure abstract classes)

March 2, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

