Object-Oriented Design and Analysis

Lecture 07 Summary

- What we know so far
- Objects
 - Encapsulation
 - Object Relationships
 - Object Model
 - Object-Oriented Analysis
- Classes

– Class Model

By the end of this lecture, you will be able to analyse a problem by breaking it down into *objects*.

You will also be able to identify *classes* of objects.

What is analysis (in any context)?

a·nal·y·sis [*uh*-nal-*uh*-sis] −noun, plural -ses [-seez].

1. the separating of any material or abstract entity into its constituent elements (opposed to SYNTHESIS).

2. this process as a method of studying the nature of something or of determining its essential features and their relations: the grammatical analysis of a sentence.

3. a presentation, usually in writing, of the results of this process: *The paper published an analysis of the political situation*.

4. a philosophical method of exhibiting complex concepts or propositions as compounds or functions of more basic ones.

Source: Dictionary.com

• • •

Procedural Analysis

Information

• Processes (procedures)

What are the *constructs* of a process?

What is the advantage of writing functions or procedures?

What are the advantages/disadvantages of C/Python?

Modularization

• Helps to hide unnecessary details

-e.g., #include <math.h>

- Can be *recursive*
 - Modules can contain modules

• Abstract Data Types are a form of module

Procedural vs. Object-Oriented

- Procedural Decomposition/Analysis
 - variables (information)
 - functions (processes)

- Object-Oriented Analysis
 - objects
 - object relationships

What is the advantage of hiding implementation details?

Encapsulation

• Objects are said to *encapsulate* their implementation details

 To use an object, you don't need to know the details of how to manipulate its state

• E.g., inserting elements into a list in Python

Example: Tag Cloud

What object relationships exist in our *object model*?

Aggregation

• "Has-a" relationship between objects

- E.g.,
 - A location has a latitude
 - A location has a longitude

What are the aggregate relationships in our object model?

Classes

Classify the following words

- absent
- invent
- lapdog
- lasted
- mascot
- napkin
- rented

- rested
- sunlit
- sunset
- suntan
- zigzag
- insect
- sudden

Linnaean Classification

- Life
- Domain
- Kingdom
- Phylum
- Class
- Order
- Family
- Genus
- Species

- Hierarchical
 - Most general to most specific
- Called generalization
 - Use *inheritance* to create generalized classifications
 - But, not until later in the course

Linnaean Classification

- Method 1:
 - A biologist comes up with a category
 - Goes out and tries to find an instance of that new category.
- Method 2:
 - A biologist observes a form of life that may not exist within the classification system.
 - Once clear that the life form is not within the system, creates a new classification and adds it to the system.

Object-Oriented Design Process

- Based on observations
 - of entities & relationships
 - within the problem space

- Based on commonalities
 - similar objects belong to the same class

- Based on commonalities
 - within class model

What would the class model be for our tag cloud example?

Lecture 07 Summary

- What we know so far
- Objects
 - Encapsulation
 - Object Relationships
 - Object Model
 - Object-Oriented Analysis
- Classes

– Class Model

Next Class

- Object-Oriented Design & Implementation
- Creating Classes in Java

- i.e., implementing the class model