
1/21/2009

1

Pointers and Indirection

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

By the end of this lecture, you will be able to
describe the memory model of a C program.

You will also be able to use pointers in a C
program to control what happens in memory.

1/21/2009

2

Lecture 04 Summary

• Process Memory

• Pointers

– Declaring

– Dereferencing

– Pointer Arithmetic

• Dynamic Memory Allocation

• Passing Parameters by Reference

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

How do you break a problem down in order to
solve it using a computer program?

1/21/2009

3

Process Memory

• One (good) approach:

– Find entities which exhibit state

– Analyze how the state of each entity changes

– Create variables (or data structures) to hold the
state of the entities

– Create code that describes how to change the
state of the entities

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

Process Memory

• Program Data

– the variables which hold the entities’ states

• Program Code

– the instructions which say what to do with the
program data

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
6

1/21/2009

4

Program Data & Program Code

• How many times can a program be run?

• How many copies of the program can be
running at once?

• How many copies of the program data are
needed?

• How many copies of the program code are
needed?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

Program Data & Program Code

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

Program Code Program Data

Program Data

Program Data

Program Data

1/21/2009

5

Terminology

• Program = program code

• Process = execution of a program

• Each process has:

– a program to execute

– all of the program data for that execution

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Program Data

• Contains many segments

• Different for each operating system

– Linux/Mac OS

– Windows

• Some segments appear in most OSs

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

1/21/2009

6

Program Data

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

Stack

Heap

Global Variables

Global Variables

• All variables global to the program are stored
here.

• Once created, they are never destroyed

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

1/21/2009

7

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

How do we create a global variable in C?

Stack

• All variables local to functions are stored here.

• Last-in first-out (LIFO)

• Once the function returns, these variables are
destroyed

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

1/21/2009

8

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

How do we create a variable on the stack?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

Creating a variable on the stack is called static
memory allocation and all such variables are
called automatic variables.

1/21/2009

9

Heap

• Reserved for dynamic memory management

• The programmer must explicitly create and
destroy these variables

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

How do we create a variable on the heap?

1/21/2009

10

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

Where is the stack?

Where is the heap?

What happens if they meet?

What might cause them to meet?

Pointers

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

1/21/2009

11

Pointer Gotchas

• Two parts to think about
– the value of a variable

– the address of a variable

• Each variable has both (even pointers
themselves)!

• The value of a pointer is another variable’s
address

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Example

main()

{

int x = 100;

printf("The value of x is %d\n", x);

printf("The address of x is %u\n", &x);

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

1/21/2009

12

Declaring a Pointer

main()
{
char *charPointer;
short *shortPointer;
int *intPointer;
long *longPointer;
long long *longLongPointer;
float *floatPointer;
double *doublePointer;
unsigned char *uCharPointer;
unsigned short *uShortPointer;
unsigned int *uIntPointer;
unsigned long *uLongPointer;
unsigned long long *uLongLongPointer;

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

What type is charPointer?

char *charPointer;

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

1/21/2009

13

What can its contents be?

char *charPointer;

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

Where would it be allocated?

char *charPointer;

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

1/21/2009

14

Example

main()

{

int x = 100;

int *y = &x;

printf("The value of x is %d\n", x);

printf("The address of x is %u\n", y);

}

• How do we make use of y?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

Dereferencing Pointers

main()

{

int x = 100;

int *y = &x;

printf(" x = %d\n", x);

printf("*y = %d\n", *y);

x = x + 1;

printf(" x = %d\n", x);

printf("*y = %d\n", *y);

*y = *y + 5;

printf(" x = %d\n", x);

printf("*y = %d\n", *y);

}

• x is an integer

• y is a pointer to an integer

• x is initialized to 100

• y is initialized to the address of x

• the place in memory called “x”
can be accessed in two ways
– by using the variable name “x”

– by dereferencing the variable “y”

• *y can be used to read/write
from where y points to

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

1/21/2009

15

What is the output?

main()

{

int *x;

printf("%d\n", *x);

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

What is the output?

main()

{

int *x = 0;

printf("%d\n", *x);

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

1/21/2009

16

What is the output?

void function1()
{

int x = 100;
int *y = &x;

printf("*y = %u\n", y);
}

void function2()
{

function1();
}

main()
{

function1();
function1();
function2();

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

Pointer Arithmetic

main()

{

int x = 100;

int *y = &x;

printf("x = %d\n", x);

x++;

printf("x = %d\n", x);

x++;

printf("x = %d\n", x);

x++;

printf("x = %d\n", x);

printf("y = %u\n", y);

y++;

printf("y = %u\n", y);

y++;

printf("y = %u\n", y);

y++;

printf("y = %u\n", y);

}

Output:
x = 100

x = 101

x = 102

x = 103

y = 3219634196

y = 3219634200

y = 3219634204

y = 3219634208

• Why does y go up by 4?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

1/21/2009

17

Pointer Arithmetic

• Adding n to a pointer makes it point n spots
“to the right”

• Subtracting n makes it point n “to the left”

• Using ++ makes it point one “to the right”

• Using -- makes it point one “to the left”

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

Recall the equation from yesterday’s exercise
for calculating the address of an array element
given its index.

Given a pointer to the first element, use
pointer arithmetic to obtain a pointer to the ith

element.

1/21/2009

18

Exercise

main()

{

int array[100];

int *start = &array[0];

int *element;

int i;

for (i = 0; i < 100; i++)

{

element = ?

}

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

Consider this code

main()

{

int array[100];

int *element;

int i;

for (i = 0; i < 100; i++)

{

element = array + i;

...

}

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

1/21/2009

19

Pointers and Arrays

• In C, arrays are very closely related to pointers

• In fact, these two statements do the exact
same thing:

array[5] = 20;

*(array + 5) = 20;

• Both could be written more explicitly as:
int *elem = &array[0] + 5;

*elem = 20;

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
37

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
38

What type of variable is s?

char *s;

1/21/2009

20

Possible answers

• Pointer to a character

• An array of characters

• A string

– Most advanced C programmers would think of this
answer first (or even call it a C string)

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
39

Consider the following code

char *createName(char *first, char *middle, char *last)

{

char name[100];

name[0] = '\0';

strcat(name, first);

strcat(name, " ");

strcat(name, middle);

strcat(name, " ");

strcat(name, last);

return name;

}

main()

{

char *name = createName("Alfredo", "H.", "Pasqualie");

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
40

1/21/2009

21

Dynamic Memory Allocation

• To add a variable to the heap, we need to
manually allocate the space.

• To remove a variable from the heap, we need
to manually free up that space.

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
41

malloc and free (Example)

main()

{

int *intPointer;

intPointer = (int *)malloc(sizeof(int));

*intPointer = 20;

free(intPointer);

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
42

1/21/2009

22

malloc and free

void *malloc(int nbytes); /* must cast result */

void free(void *ptr);

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
43

Contrast

char *createName(char *first,
char *middle, char *last)

{

char name[100];

name[0] = '\0';

strcat(name, first);

strcat(name, " ");

strcat(name, middle);

strcat(name, " ");

strcat(name, last);

return name;

}

char *createName(char *first,
char *middle, char *last)

{

int size = strlen(first)
+ strlen(middle)
+ strlen(last) + 3;

char *name =
(char *) malloc(size);

*name = '\0';

strcat(name, first);

strcat(name, " ");

strcat(name, middle);

strcat(name, " ");

strcat(name, last);

return name;

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
44

1/21/2009

23

Pass by Reference

• Using pointers, we have the ability to access
pretty much any memory location.

• Most parameters are passed by value in C

• How would we pass by reference?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
45

Example

void swap(int *a, int *b)
{

int temp;
temp = *a;
*a = *b;
*b = temp;

}

main()
{

int x = 100;
int y = 200;

printf("x = %d\n", x);
printf("y = %d\n", y);

swap(&x, &y);

printf("x = %d\n", x);
printf("y = %d\n", y);

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
46

1/21/2009

24

Double Indirection

• What does this mean?
char **stringList;

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
47

Lecture 04 Summary

• Process Memory

• Pointers

– Declaring

– Dereferencing

– Pointer Arithmetic

• Dynamic Memory Allocation

• Passing Parameters by Reference

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
48

1/21/2009

25

Next Class

• Abstract Data Types

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
49

