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By the end of this lecture, you will be able to 
describe the memory model of a C program.

You will also be able to use pointers in a C 
program to control what happens in memory.
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Lecture 04 Summary

• Process Memory

• Pointers

– Declaring

– Dereferencing

– Pointer Arithmetic

• Dynamic Memory Allocation

• Passing Parameters by Reference
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How do you break a problem down in order to 
solve it using a computer program?
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Process Memory

• One (good) approach:

– Find entities which exhibit state

– Analyze how the state of each entity changes

– Create variables (or data structures) to hold the 
state of the entities

– Create code that describes how to change the 
state of the entities
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Process Memory

• Program Data

– the variables which hold the entities’ states

• Program Code

– the instructions which say what to do with the 
program data
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Program Data & Program Code

• How many times can a program be run?

• How many copies of the program can be 
running at once?

• How many copies of the program data are 
needed?

• How many copies of the program code are 
needed?
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Program Data & Program Code
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Program Code Program Data

Program Data

Program Data

Program Data
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Terminology

• Program = program code

• Process = execution of a program

• Each process has:

– a program to execute

– all of the program data for that execution
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Program Data

• Contains many segments

• Different for each operating system

– Linux/Mac OS

– Windows

• Some segments appear in most OSs
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Program Data

January 13, 2009
Slides by Mark Hancock                       

(adapted from notes by Craig Schock)
11

Stack

Heap

Global Variables

Global Variables

• All variables global to the program are stored 
here.

• Once created, they are never destroyed
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How do we create a global variable in C?

Stack

• All variables local to functions are stored here.

• Last-in first-out (LIFO)

• Once the function returns, these variables are 
destroyed
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How do we create a variable on the stack?
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Creating a variable on the stack is called static 
memory allocation and all such variables are 
called automatic variables.
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Heap

• Reserved for dynamic memory management

• The programmer must explicitly create and 
destroy these variables
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How do we create a variable on the heap?
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Where is the stack?

Where is the heap?

What happens if they meet?

What might cause them to meet?

Pointers
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Pointer Gotchas

• Two parts to think about
– the value of a variable

– the address of a variable

• Each variable has both (even pointers 
themselves)!

• The value of a pointer is another variable’s 
address
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Example

main()

{

int x = 100;

printf("The value of x is %d\n", x);

printf("The address of x is %u\n", &x);

}
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Declaring a Pointer

main()
{
char *charPointer;
short *shortPointer;
int *intPointer;
long *longPointer;
long long *longLongPointer;
float *floatPointer;
double *doublePointer;
unsigned char *uCharPointer;
unsigned short *uShortPointer;
unsigned int *uIntPointer;
unsigned long *uLongPointer;
unsigned long long *uLongLongPointer;

}
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What type is charPointer?

char *charPointer;
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What can its contents be?

char *charPointer;
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Where would it be allocated?

char *charPointer;
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Example

main()

{

int x = 100;

int *y = &x;

printf("The value of x is %d\n", x);

printf("The address of x is %u\n", y);

}

• How do we make use of y?
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Dereferencing Pointers

main()

{

int x = 100;

int *y = &x;

printf(" x = %d\n", x);

printf("*y = %d\n", *y);

x = x + 1;

printf(" x = %d\n", x);

printf("*y = %d\n", *y);

*y = *y + 5;

printf(" x = %d\n", x);

printf("*y = %d\n", *y);

}

• x is an integer

• y is a pointer to an integer

• x is initialized to 100

• y is initialized to the address of x

• the place in memory called “x” 
can be accessed in two ways
– by using the variable name “x”

– by dereferencing the variable “y”

• *y can be used to read/write 
from where y points to
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What is the output?

main()

{

int *x;

printf("%d\n", *x);

}
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What is the output?

main()

{

int *x = 0;

printf("%d\n", *x);

}
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What is the output?

void function1()
{

int x = 100;
int *y = &x;

printf("*y = %u\n", y);
}

void function2()
{

function1();
}

main()
{

function1();
function1();
function2();

}
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Pointer Arithmetic

main()

{

int x = 100;

int *y = &x;

printf("x = %d\n", x);

x++;

printf("x = %d\n", x);

x++;

printf("x = %d\n", x);

x++;

printf("x = %d\n", x);

printf("y = %u\n", y);

y++;

printf("y = %u\n", y);

y++;

printf("y = %u\n", y);

y++;

printf("y = %u\n", y);

}

Output:
x = 100

x = 101

x = 102

x = 103

y = 3219634196

y = 3219634200

y = 3219634204

y = 3219634208

• Why does y go up by 4?
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Pointer Arithmetic

• Adding n to a pointer makes it point n spots 
“to the right”

• Subtracting n makes it point n “to the left”

• Using ++ makes it point one “to the right”

• Using -- makes it point one “to the left”
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Recall the equation from yesterday’s exercise 
for calculating the address of an array element 
given its index.

Given a pointer to the first element, use 
pointer arithmetic to obtain a pointer to the ith

element.



1/21/2009

18

Exercise

main()

{

int array[100];

int *start = &array[0];

int *element;

int i;

for (i = 0; i < 100; i++)

{

element = ?

}

}
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Consider this code

main()

{

int array[100];

int *element;

int i;

for (i = 0; i < 100; i++)

{

element = array + i;

...

}

}

January 13, 2009
Slides by Mark Hancock                       

(adapted from notes by Craig Schock)
36



1/21/2009

19

Pointers and Arrays

• In C, arrays are very closely related to pointers

• In fact, these two statements do the exact 
same thing:

array[5] = 20;

*(array + 5) = 20;

• Both could be written more explicitly as:
int *elem = &array[0] + 5;

*elem = 20;
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What type of variable is s?

char *s;
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Possible answers

• Pointer to a character

• An array of characters

• A string

– Most advanced C programmers would think of this 
answer first (or even call it a C string)
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Consider the following code

char *createName(char *first, char *middle, char *last)

{

char name[100];

name[0] = '\0';

strcat(name, first);

strcat(name, " ");

strcat(name, middle);

strcat(name, " ");

strcat(name, last);

return name;

}

main()

{

char *name = createName("Alfredo", "H.", "Pasqualie");

}

January 13, 2009
Slides by Mark Hancock                       

(adapted from notes by Craig Schock)
40



1/21/2009

21

Dynamic Memory Allocation

• To add a variable to the heap, we need to 
manually allocate the space.

• To remove a variable from the heap, we need 
to manually free up that space.
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malloc and free (Example)

main()

{

int *intPointer;

intPointer = (int *)malloc( sizeof(int) );

*intPointer = 20;

free(intPointer);

}
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malloc and free

void *malloc(int nbytes); /* must cast result */

void free(void *ptr);
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Contrast

char *createName(char *first,
char *middle, char *last)

{

char name[100];

name[0] = '\0';

strcat(name, first);

strcat(name, " ");

strcat(name, middle);

strcat(name, " ");

strcat(name, last);

return name;

}

char *createName(char *first,
char *middle, char *last)

{

int size = strlen(first)
+ strlen(middle)
+ strlen(last) + 3;

char *name =
(char *) malloc(size);

*name = '\0';

strcat(name, first);

strcat(name, " ");

strcat(name, middle);

strcat(name, " ");

strcat(name, last);

return name;

}
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Pass by Reference

• Using pointers, we have the ability to access 
pretty much any memory location.

• Most parameters are passed by value in C

• How would we pass by reference?
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Example

void swap(int *a, int *b)
{

int temp;
temp = *a;
*a = *b;
*b = temp;

}

main()
{

int x = 100;
int y = 200;

printf("x = %d\n", x);
printf("y = %d\n", y);

swap(&x, &y);

printf("x = %d\n", x);
printf("y = %d\n", y);

}
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Double Indirection

• What does this mean?
char **stringList;
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Lecture 04 Summary

• Process Memory

• Pointers

– Declaring

– Dereferencing

– Pointer Arithmetic

• Dynamic Memory Allocation

• Passing Parameters by Reference
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Next Class

• Abstract Data Types
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