
Create a Program in C (Last Class)

• Input:
– three floating point numbers

• Output:
– the average of those three numbers

• Use:
– scanf to get the input

– printf to show the result

– a function to calculate the average

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
1

printf, scanf Syntax

printf(char *format, ...)

scanf(char *format, ...)

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
2

Format String

• %d – decimal integer

• %s – string

• %c – character

• %f – floating-point number

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
3

Example

int x;

scanf("Enter an integer: ", &i);

printf("The integer you entered is: ", i);

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
4

C/Java Syntax – Arrays and Strings

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
5

Lecture 03 Summary

• Arrays

• In-class Exercises

• Strings

January 13, 2009 6
Slides by Mark Hancock

(adapted from notes by Craig Schock)

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
7

By the end of this lecture, you will be able to
write C code that uses and manipulates arrays
and/or strings.

You will also be able to describe what happens
in the computer’s memory when this code is
executed.

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
8

In Python, how would you write a function
that takes the average of a set of numbers?

Example

def average(list):

sum = 0.0

size = 0

for num in list:

sum = sum + num

size = size + 1

return sum / size

• What would you pass into this function?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
9

Example

avg = average([3,5,10,4,1,6])

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
10

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
11

In C, there are no lists, only arrays

Arrays vs. Lists

Arrays in C

• Have a fixed size that never
changes
– once full, will not grow

• All elements are of the
same type (int, float, etc.)

• Has no insert or append
operations
– must write these yourself

Lists in Python

• Can add/remove elements
at will

• Elements can be of different
types

• Has special operations to
insert, append, get the size,
etc.

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
12

Array Declaration Syntax

<type> array_name[<# elements>];

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
13

Examples

int test_scores[10];

char student_name[50];

short avg_rainfall[31];

float observations[10000];

double temperatures[100];

unsigned int no_negatives[25];

long long big_numbers[3000];

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
14

Array Access Syntax

array_name[<element-index>]

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
15

Example

main()
{

int test_scores[100];
int i;

/* initialize all array elements to 0 */
for (i = 0; i< 100; i++)

test_scores[i] = 0;

/* Print out array elements */
for (i = 0; i< 100; i++)

printf("test_scores[%d] = %d\n", i, test_scores[i]);

/* modify some array elements */
test_scores[30] = 89;
test_scores[25] = 37;
test_scores[98] = 56;
test_scores[33] = 21;

/* print out array elements */
for (i = 0; i< 100; i++)

printf("test_scores[%d] = %d\n", i, test_scores[i]);
}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
16

Array Initialization Syntax

<array-declaration> = { <element1>,

<element2>, <element3>, ... };

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
17

Example

main ()

{

int my_array[] = {50, 25, 31, 22, 16};

int i;

for (i = 0; i < 5; i++)

{

printf("my_array[%d] = %d\n", i, my_array[i]);

}

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
18

Arrays as Function Parameters

void print_int_array(int array[])

• Write this function

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
19

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
20

Write a C function that computes the average
of an array of numbers.

Exercises: Arrays in Memory

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
21

Exercise 1: Draw a Diagram

main()
{

char array1[5];
short array2[5];
int array3[5];
long array4[5];
long long array5[5];
float array6[5];
double array7[5];

unsigned char array8[5];
unsigned short array9[5];
unsigned int array10[5];
unsigned long array11[5];
unsigned long long array12[5];

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
22

Exercise 2

• Compute the size (in bytes) of each array.

• How did you compute the size?

• What information do you need to know to
compute the amount of memory taken by an
array?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
23

Exercise 3

• Assume all of the arrays start at location 1000
(decimal).

• Compute the address (in memory) for each
array element for each array.

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
24

Exercise 4

• What is the relationship between the index of
an array element and its actual address?
(express your answer in the form of an
equation)

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
25

Exercise 5: Explain the output

main ()

{

int x = 1000;

int my_array[100];

int y = 1000;

int i;

printf("x = %d\n", x);

printf("y = %d\n\n", y);

my_array[-1] = 5000;

printf("x = %d\n", x);

printf("y = %d\n", y);

}

Output:

x = 1000

y = 1000

x = 1000

y = 5000

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
26

Consider the following

void function(float[] array)

{

...

}

• What is the maximum size of the array?

• How many elements are in the array?

• What happens if you try to access an element
outside the array’s bounds?

• How would you insert an element in the middle?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
27

array[89]

• When the compiler sees this bit of code, what
does it do?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
28

Strings

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
29

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
30

In C, there is no “string” type

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
31

What is a string made up of?

Example

char student_name[30];

• Can I store the string
“Wolfeschlegelsteinhausenbergerdorff” (35
chars)?

• Can I store the string “Matthew” (7 chars)?

• How does printf know to stop after the ‘w’?

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
32

Null-terminated

• A string does not have to take up all of the
allocated space.

• Must end with the null character:

– ‘\0’

– ascii value 0

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
33

Example

char name[] = "Bob";

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
34

B o b \0

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
35

What happens if you forget to end a string
with ‘\0’?

C String Functions

Name Syntax Purpose

strcpy
strcpy(char *s1,

const char *s2)

Copies the string pointed to by s2 into the
character array pointed to by s1 (including
the null terminator byte). s2 must be null-
terminated and the programmer must
ensure that the character array pointed to
by s1 is large enough to accomodate the
string in s2.

strncpy

strncpy(char *s1,

const char *s2,

int n)

Copies at most n characters from s2 into the
character array s1. The null byte will be
included in the copy.

strcat
strcat(char *s1,

const char *s2)

appends string s2 to the end of character
array s1. The first character of s2 overwrites
the null character at the end of s1.

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
36

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
37

Name Syntax Purpose

strncat

strncat(char *s1,

const char *s2,

int n)

appends at most n characters of the
string s2 to the end of character
array s1. The first character of s2
overwrites the null character at the
end of s1.

strcmp
int strcmp(const char *s1,

const char *s2)

compares the string s1 to the string
s2. If the strings are identical, the
function returns 0. If s1 islexically
less than s2, then a number < 0 is
returned. If s1 is lexcially greater
than s2, then a value > 0 is returned

strncmp

int strncmp(const char *s1,

const char *s2,

int n)

same as strcmp except than only up
to n characters are compared.

strlen int strlen(const char *s)

returns the number of characters in
the string (not including the null
character)

Example

strcat(char *s1, const char *s2)
{

int i = 0;
int j = 0;

/* Find the end of the first string */
while (s1[i] != '\0')
{

i++;
}

/* Starting there, add the contents of the second */
while (s2[j] != '\0')
{

s1[i] = s2[j];

i++;
j++;

}

/* Make sure the string is null-terminated */
s1[i] = '\0';

}

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
38

Exercise

• Create a function called ninjify that adds an
extra space character in between each word.

– “Is there a ninja in my program?”
would become:
“Is there a ninja in my program?”

• The function signature should be:

void ninjify(char *s1, const char *s2)

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
39

Lecture 03 Summary

• Arrays

• In-class Exercises

• Strings

January 13, 2009 40
Slides by Mark Hancock

(adapted from notes by Craig Schock)

Next Class

• Pointers and Indirection

January 13, 2009
Slides by Mark Hancock

(adapted from notes by Craig Schock)
41

