
Create a Program in C (Last Class)

• Input:
– three floating point numbers

• Output:
– the average of those three numbers

• Use:
– scanf to get the input

– printf to show the result

– a function to calculate the average
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printf, scanf Syntax

printf(char *format, ...)

scanf(char *format, ...)
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Format String

• %d – decimal integer

• %s – string

• %c – character

• %f – floating-point number
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Example

int x;

scanf("Enter an integer: ", &i);

printf("The integer you entered is: ", i);

January 13, 2009
Slides by Mark Hancock                       

(adapted from notes by Craig Schock)
4



C/Java Syntax – Arrays and Strings
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Lecture 03 Summary

• Arrays

• In-class Exercises

• Strings
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By the end of this lecture, you will be able to 
write C code that uses and manipulates arrays 
and/or strings. 

You will also be able to describe what happens 
in the computer’s memory when this code is 
executed.
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In Python, how would you write a function 
that takes the average of a set of numbers?



Example

def average(list):

sum = 0.0

size = 0

for num in list:

sum = sum + num

size = size + 1

return sum / size

• What would you pass into this function?
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Example

avg = average([3,5,10,4,1,6])
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In C, there are no lists, only arrays



Arrays vs. Lists

Arrays in C

• Have a fixed size that never 
changes
– once full, will not grow

• All elements are of the 
same type (int, float, etc.)

• Has no insert or append 
operations
– must write these yourself

Lists in Python

• Can add/remove elements 
at will

• Elements can be of different 
types

• Has special operations to 
insert, append, get the size, 
etc.
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Array Declaration Syntax

<type> array_name[<# elements>];
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Examples

int test_scores[10];

char student_name[50];

short avg_rainfall[31];

float observations[10000];

double temperatures[100];

unsigned int no_negatives[25];

long long big_numbers[3000];
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Array Access Syntax

array_name[<element-index>]
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Example

main()
{

int test_scores[100];
int i;

/* initialize all array elements to 0 */
for (i = 0; i< 100; i++)

test_scores[i] = 0;

/* Print out array elements */
for (i = 0; i< 100; i++)

printf("test_scores[%d] = %d\n", i, test_scores[i]);

/* modify some array elements */
test_scores[30] = 89;
test_scores[25] = 37;
test_scores[98] = 56;
test_scores[33] = 21;

/* print out array elements */
for (i = 0; i< 100; i++)

printf("test_scores[%d] = %d\n", i, test_scores[i]);
}
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Array Initialization Syntax

<array-declaration> = { <element1>,

<element2>, <element3>, ... };
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Example

main ()

{

int my_array[] = {50, 25, 31, 22, 16};

int i;

for (i = 0; i < 5; i++)

{

printf("my_array[%d] = %d\n", i, my_array[i]);

}

}
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Arrays as Function Parameters

void print_int_array(int array[])

• Write this function
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Write a C function that computes the average 
of an array of numbers.



Exercises: Arrays in Memory

January 13, 2009
Slides by Mark Hancock                       

(adapted from notes by Craig Schock)
21



Exercise 1: Draw a Diagram

main()
{

char array1[5];
short array2[5];
int array3[5];
long array4[5];
long long array5[5];
float array6[5];
double array7[5];

unsigned char array8[5];
unsigned short array9[5];
unsigned int array10[5];
unsigned long array11[5];
unsigned long long array12[5];

}
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Exercise 2

• Compute the size (in bytes) of each array.

• How did you compute the size?

• What information do you need to know to 
compute the amount of memory taken by an 
array?
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Exercise 3

• Assume all of the arrays start at location 1000 
(decimal).

• Compute the address (in memory) for each 
array element for each array.
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Exercise 4

• What is the relationship between the index of 
an array element and its actual address? 
(express your answer in the form of an 
equation)
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Exercise 5: Explain the output

main ()

{

int x = 1000;

int my_array[100];

int y = 1000;

int i;

printf("x = %d\n", x);

printf("y = %d\n\n", y);

my_array[-1] = 5000;

printf("x = %d\n", x);

printf("y = %d\n", y);

}

Output:

x = 1000

y = 1000

x = 1000

y = 5000
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Consider the following

void function(float[] array)

{

...

}

• What is the maximum size of the array?

• How many elements are in the array?

• What happens if you try to access an element 
outside the array’s bounds?

• How would you insert an element in the middle?
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array[89]

• When the compiler sees this bit of code, what 
does it do?
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Strings
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In C, there is no “string” type
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What is a string made up of?



Example

char student_name[30];

• Can I store the string 
“Wolfeschlegelsteinhausenbergerdorff” (35 
chars)?

• Can I store the string “Matthew” (7 chars)?

• How does printf know to stop after the ‘w’?
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Null-terminated

• A string does not have to take up all of the 
allocated space.

• Must end with the null character:

– ‘\0’

– ascii value 0
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Example

char name[] = "Bob";
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B o b \0
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What happens if you forget to end a string 
with ‘\0’?



C String Functions

Name Syntax Purpose

strcpy
strcpy(char *s1,

const char *s2)

Copies the string pointed to by s2 into the 
character array pointed to by s1 (including 
the null terminator byte). s2 must be null-
terminated and the programmer must 
ensure that the character array pointed to 
by s1 is large enough to accomodate the 
string in s2.

strncpy

strncpy(char *s1,

const char *s2,

int n)

Copies at most n characters from s2 into the 
character array s1. The null byte will be 
included in the copy.

strcat
strcat(char *s1,

const char *s2)

appends string s2 to the end of character 
array s1. The first character of s2 overwrites 
the null character at the end of s1.
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Name Syntax Purpose

strncat

strncat(char *s1,

const char *s2,

int n)

appends at most n characters of the 
string s2 to the end of character 
array s1. The first character of s2 
overwrites the null character at the 
end of s1.

strcmp
int strcmp(const char *s1,

const char *s2)

compares the string s1 to the string 
s2. If the strings are identical, the 
function returns 0. If s1 islexically 
less than s2, then a number < 0 is 
returned. If s1 is lexcially greater 
than s2, then a value > 0 is returned

strncmp

int strncmp(const char *s1,

const char *s2,

int n)

same as strcmp except than only up 
to n characters are compared.

strlen int strlen(const char *s)

returns the number of characters in 
the string (not including the null 
character)



Example

strcat(char *s1, const char *s2)
{

int i = 0;
int j = 0;

/* Find the end of the first string */
while (s1[i] != '\0')
{

i++;
}

/* Starting there, add the contents of the second */
while (s2[j] != '\0')
{

s1[i] = s2[j];

i++;
j++;

}

/* Make sure the string is null-terminated */
s1[i] = '\0';

}
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Exercise

• Create a function called ninjify that adds an 
extra space character in between each word.

– “Is there a ninja in my program?”
would become:
“Is there  a  ninja  in  my  program?”

• The function signature should be:

void ninjify(char *s1, const char *s2)
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Lecture 03 Summary

• Arrays

• In-class Exercises

• Strings
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Next Class

• Pointers and Indirection
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