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Lecture 01 Summary

• Administrivia

• Expectations

• Purpose of Programming

• Course Goals & Objectives

• Interpreters vs. Compilers

• Syntax Errors vs. Semantic Errors
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Administrivia
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Office Hours

• MS 616

• TR 11:00-12:00 (or by appointment)

• Email: msh@cs.ucalgary.ca

• Phone: 210-9499
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Textbooks

• Head First Java, 2nd Edition (required)

Kathy Sierra and Bert Bates (O'Reilly & Associates)

• C Programming Language (recommended)

Brian Kernighan and Dennis Ritchie (Prentice Hall)
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Grading

• Assignments (50 %)

• Midterm (25 %)

• Final (25 %)
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Assignments

Assignment # Weight Due Date

1 5% Friday, Feb 6

2 7.5% Friday, Feb 20

3 15% Friday, Mar 13

4 15% Friday, Apr 3

5 7.5% Friday, Apr 17
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Academic Misconduct

• Working together vs. plagiarism
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Expectations

January 13, 2009 Slides by Mark Hancock 9



Purpose of Programming
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By the end of this 30 minute section, you will 
be able to identify two different uses of a 
computer program, outside of the field of 
Computer Science.



Activity: Draw a computer
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Elements of a Program

• Input

– Sources: people, internet, weather, cameras, etc.

• Sequence of steps

– Magic happens

• Output

– Display the result: on a screen, as sound, etc.
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Example Program

Tip Calculator:

• Input

– Bill and tip amount entered by person

• Sequence of steps

– Magic happens

• Output

– Amount of tip displayed on screen
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In pairs, describe two possible computer 
programs (one in each person’s discipline).



Example Program

Tip Calculator:

• Input

– Bill and tip amount entered by person

• Sequence of steps

– Magic happens

• Output

– Amount of tip displayed on screen

January 13, 2009 Slides by Mark Hancock 19



Course Goals & Objectives
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How do we get the computer to perform a 
sequence of steps on a particular input to 
produce some sort of useful output?

How do we solve problems with a computer 
program?
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Can we make this sequence of steps be 
reusable by someone else looking to solve a 
similar problem?
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How do we ensure that our program does 
what we want it to do?
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Change the way we think about this process: 
Object-Oriented Programming



Course Goals

• This course aims to help the student develop an 
awareness of:

• how objects can be used as a basis for solving problems;

• how to implement solutions using an object-oriented 
language;

• how to apply object-oriented problem-solving techniques to 
scientific areas of study;

• the nature of objects and their relationship to information 
and information processing; and

• how to develop solutions which exhibit elements of good 
style.
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Course Objectives

• By the end of this course students should be able 
to:

• analyse problems using an object-oriented framework;

• design and implement solutions using object-oriented
concepts:

– encapsulation

– inheritance

– polymorphism;

• create and execute unit tests on implemented 
solutions; and

• evaluate the quality of program designs.
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Programming Languages:
C and Java
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What “language” does the computer use to 
execute a sequence of steps?



Machine Code

“Machine code or machine language is a system 
of instructions and data executed directly by 
a computer's central processing unit.”

Each CPU has its own instruction set.
– Arithmetic: add, subtract, multiply, divide

– Move data from place to place

– Control flow: e.g., if, goto, call a function

– Logic: and, or, not, exclusive or (XOR)
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Source: Wikipedia



Machine Code Example

Instruction: add registers 1 and 2 and place the 
result in register 6 (MIPS architecture)
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0 1 2 6 0 32 Decimal

000000 000001 000010 00110 000000 100000 Binary



Assembly Language

One-to-one mapping from machine code to 
“human-readable” instruction.

January 13, 2009 Slides by Mark Hancock 31



Assembly Language

Motorola 68000 CPU:

– ADD: add two operands together and store the 
result in the destination operand

– MULU: multiplies a 16-bit data register by a 16-bit 
effective address operand leaving the 32-bit result 
in the data register

– MOVE: Copies a byte (8 bits), word (16 bits) or 
long word (32 bits) from one effective address to 
another
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Assembly Language Example

Evaluate the equation: A2 = A0 * A1 + A3
lea $1000, A0

lea $1004, A1

lea $1008, A2

lea $100A, A3

move.l (A0), D0

move.l (A1), D1

mulu D0, D1

move.l (A3), D0

add.l D1, D0

move.l D0, (A2)
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How would you write a program that 
evaluates that equation in Python?

Equation: A2 = A0 * A1 + A3
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A2 = A0 * A1 + A3



Summary

• Machine code is a set of binary instructions 
specific to a CPU

• Assembly language is a one-to-one mapping 
from machine instructions to “human-
readable” instructions

• Reading and writing code in a language like 
Python is much easier
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Interpreters vs. Compilers
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By the end of this 30 minute section, you will 
be able to describe the steps necessary to run 
a compiled program.
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Can the CPU understand Python (or C/Java)? 
Why/why not?



Interpreters

Each Line 
of Code

Interpreter CPU
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Python 
Source Code

To run:



Steps required

• Write the source code in a text file

– E.g., HelloWorld.py

• Run the program

– Execute the following command (e.g., in Unix):
python HelloWorld.py
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Compilers

C Source 
Code

Compiler Executable
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Written by programmer

Machine Language
(can be run on CPU)

Executable CPU

To run:



Steps required

• Write the source code in a text file

– E.g., HelloWorld.c

• Compile the source code

– Execute the following command (e.g.):
gcc HelloWorld.c

• Run the program

– Execute the following command (e.g., in Unix):
./a.out
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Demo
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Java is a compiled language. What steps are 
necessary to run a program written in Java?



Steps

• Write the source code in a text file

– E.g., HelloWorld.java

• Compile the source code

– Execute the following command (e.g.):
javac HelloWorld.java

• Run the program

– Execute the following command (e.g.):
java HelloWorld
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Why not learn one language and use it for 
everything?



In this course

• Pointers:

– Assembly language

– C

• Abstract Data Types:

– Python

– Java
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Syntax Errors vs. Semantic Errors
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By the end of this 15 minute section, you will 
be able to distinguish between a syntax error 
and a semantic error.
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With a natural language (e.g., English), what is 
the difference between syntax and semantics?
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Syntax error in English:

– “I accidentally the whole class.”

Semantic error in English:

– “I’ve been alive for five light years.”



Syntax Error

• An error caused by incorrect use of the syntax 
of the programming language

• Result:

– Compiled language?

– Interpreted language?
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Syntax Error: Example
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Semantic Error

• An error caused by code which may be 
readable by the computer, but has incorrect 
logic

• Result:

– Compiled language?

– Interpreted language?
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Semantic Error: Example
Python
def addInts(a, b):

return a + b

x = addInts(10, 20)

print "x = %i\n" % x

y = addInts(200, "Hello") 

C
int addInts(int a, int b)

{

return a + b;

}

int main()

{

int x;

int y;

x = addInts(10, 20);

printf("x = %d\n", x);

y = addInts(200, 

"Hello");

}
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Find the errors

a = [1, 2, 3, 4]

i = 0

while i < 4

i=i+1

print a[i]
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One way to fix

a = [1, 2, 3, 4]

i = 0

while i < 4:

print a[i]

i=i+1
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Lecture 01 Summary

• Administrivia

• Expectations

• Purpose of Programming

• Course Goals & Objectives

• Interpreters vs. Compilers

• Syntax Errors vs. Semantic Errors
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Next Class

• C/Java Syntax
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