
CPSC 219
Introduction to Computer Science

for Multidisciplinary Studies II

Instructor: Mark Hancock

January 13, 2009 1

Lecture 01 Summary

• Administrivia

• Expectations

• Purpose of Programming

• Course Goals & Objectives

• Interpreters vs. Compilers

• Syntax Errors vs. Semantic Errors

January 13, 2009 2Slides by Mark Hancock

Administrivia

January 13, 2009 Slides by Mark Hancock 3

Office Hours

• MS 616

• TR 11:00-12:00 (or by appointment)

• Email: msh@cs.ucalgary.ca

• Phone: 210-9499

January 13, 2009 Slides by Mark Hancock 4

Textbooks

• Head First Java, 2nd Edition (required)

Kathy Sierra and Bert Bates (O'Reilly & Associates)

• C Programming Language (recommended)

Brian Kernighan and Dennis Ritchie (Prentice Hall)

January 13, 2009 Slides by Mark Hancock 5

Grading

• Assignments (50 %)

• Midterm (25 %)

• Final (25 %)

January 13, 2009 Slides by Mark Hancock 6

Assignments

Assignment # Weight Due Date

1 5% Friday, Feb 6

2 7.5% Friday, Feb 20

3 15% Friday, Mar 13

4 15% Friday, Apr 3

5 7.5% Friday, Apr 17

January 13, 2009 Slides by Mark Hancock 7

Academic Misconduct

• Working together vs. plagiarism

January 13, 2009 Slides by Mark Hancock 8

Expectations

January 13, 2009 Slides by Mark Hancock 9

Purpose of Programming

January 13, 2009 Slides by Mark Hancock 10

January 13, 2009 Slides by Mark Hancock 11

By the end of this 30 minute section, you will
be able to identify two different uses of a
computer program, outside of the field of
Computer Science.

Activity: Draw a computer

January 13, 2009 Slides by Mark Hancock 12

January 13, 2009 Slides by Mark Hancock 13

January 13, 2009 Slides by Mark Hancock 14

Elements of a Program

• Input

– Sources: people, internet, weather, cameras, etc.

• Sequence of steps

– Magic happens

• Output

– Display the result: on a screen, as sound, etc.

January 13, 2009 Slides by Mark Hancock 15

Example Program

Tip Calculator:

• Input

– Bill and tip amount entered by person

• Sequence of steps

– Magic happens

• Output

– Amount of tip displayed on screen

January 13, 2009 Slides by Mark Hancock 16

January 13, 2009 Slides by Mark Hancock 17

4

3 3 3

2

1 1

2

January 13, 2009 Slides by Mark Hancock 18

In pairs, describe two possible computer
programs (one in each person’s discipline).

Example Program

Tip Calculator:

• Input

– Bill and tip amount entered by person

• Sequence of steps

– Magic happens

• Output

– Amount of tip displayed on screen

January 13, 2009 Slides by Mark Hancock 19

Course Goals & Objectives

January 13, 2009 Slides by Mark Hancock 20

January 13, 2009 Slides by Mark Hancock 21

How do we get the computer to perform a
sequence of steps on a particular input to
produce some sort of useful output?

How do we solve problems with a computer
program?

January 13, 2009 Slides by Mark Hancock 22

Can we make this sequence of steps be
reusable by someone else looking to solve a
similar problem?

January 13, 2009 Slides by Mark Hancock 23

How do we ensure that our program does
what we want it to do?

January 13, 2009 Slides by Mark Hancock 24

Change the way we think about this process:
Object-Oriented Programming

Course Goals

• This course aims to help the student develop an
awareness of:

• how objects can be used as a basis for solving problems;

• how to implement solutions using an object-oriented
language;

• how to apply object-oriented problem-solving techniques to
scientific areas of study;

• the nature of objects and their relationship to information
and information processing; and

• how to develop solutions which exhibit elements of good
style.

January 13, 2009 Slides by Mark Hancock 25

Course Objectives

• By the end of this course students should be able
to:

• analyse problems using an object-oriented framework;

• design and implement solutions using object-oriented
concepts:

– encapsulation

– inheritance

– polymorphism;

• create and execute unit tests on implemented
solutions; and

• evaluate the quality of program designs.

January 13, 2009 Slides by Mark Hancock 26

Programming Languages:
C and Java

January 13, 2009 Slides by Mark Hancock 27

January 13, 2009 Slides by Mark Hancock 28

What “language” does the computer use to
execute a sequence of steps?

Machine Code

“Machine code or machine language is a system
of instructions and data executed directly by
a computer's central processing unit.”

Each CPU has its own instruction set.
– Arithmetic: add, subtract, multiply, divide

– Move data from place to place

– Control flow: e.g., if, goto, call a function

– Logic: and, or, not, exclusive or (XOR)

January 13, 2009 Slides by Mark Hancock 29

Source: Wikipedia

Machine Code Example

Instruction: add registers 1 and 2 and place the
result in register 6 (MIPS architecture)

January 13, 2009 Slides by Mark Hancock 30

0 1 2 6 0 32 Decimal

000000 000001 000010 00110 000000 100000 Binary

Assembly Language

One-to-one mapping from machine code to
“human-readable” instruction.

January 13, 2009 Slides by Mark Hancock 31

Assembly Language

Motorola 68000 CPU:

– ADD: add two operands together and store the
result in the destination operand

– MULU: multiplies a 16-bit data register by a 16-bit
effective address operand leaving the 32-bit result
in the data register

– MOVE: Copies a byte (8 bits), word (16 bits) or
long word (32 bits) from one effective address to
another

January 13, 2009 Slides by Mark Hancock 32

Assembly Language Example

Evaluate the equation: A2 = A0 * A1 + A3
lea $1000, A0

lea $1004, A1

lea $1008, A2

lea $100A, A3

move.l (A0), D0

move.l (A1), D1

mulu D0, D1

move.l (A3), D0

add.l D1, D0

move.l D0, (A2)

January 13, 2009 Slides by Mark Hancock 33

January 13, 2009 Slides by Mark Hancock 34

How would you write a program that
evaluates that equation in Python?

Equation: A2 = A0 * A1 + A3

January 13, 2009 Slides by Mark Hancock 35

A2 = A0 * A1 + A3

Summary

• Machine code is a set of binary instructions
specific to a CPU

• Assembly language is a one-to-one mapping
from machine instructions to “human-
readable” instructions

• Reading and writing code in a language like
Python is much easier

January 13, 2009 Slides by Mark Hancock 36

Interpreters vs. Compilers

January 13, 2009 Slides by Mark Hancock 37

January 13, 2009 Slides by Mark Hancock 38

By the end of this 30 minute section, you will
be able to describe the steps necessary to run
a compiled program.

January 13, 2009 Slides by Mark Hancock 39

Can the CPU understand Python (or C/Java)?
Why/why not?

Interpreters

Each Line
of Code

Interpreter CPU

January 13, 2009 Slides by Mark Hancock 40

Python
Source Code

To run:

Steps required

• Write the source code in a text file

– E.g., HelloWorld.py

• Run the program

– Execute the following command (e.g., in Unix):
python HelloWorld.py

January 13, 2009 Slides by Mark Hancock 41

Compilers

C Source
Code

Compiler Executable

January 13, 2009 Slides by Mark Hancock 42

Written by programmer

Machine Language
(can be run on CPU)

Executable CPU

To run:

Steps required

• Write the source code in a text file

– E.g., HelloWorld.c

• Compile the source code

– Execute the following command (e.g.):
gcc HelloWorld.c

• Run the program

– Execute the following command (e.g., in Unix):
./a.out

January 13, 2009 Slides by Mark Hancock 43

January 13, 2009 Slides by Mark Hancock 44

Demo

January 13, 2009 Slides by Mark Hancock 45

Java is a compiled language. What steps are
necessary to run a program written in Java?

Steps

• Write the source code in a text file

– E.g., HelloWorld.java

• Compile the source code

– Execute the following command (e.g.):
javac HelloWorld.java

• Run the program

– Execute the following command (e.g.):
java HelloWorld

January 13, 2009 Slides by Mark Hancock 46

January 13, 2009 Slides by Mark Hancock 47

Why not learn one language and use it for
everything?

In this course

• Pointers:

– Assembly language

– C

• Abstract Data Types:

– Python

– Java

January 13, 2009 Slides by Mark Hancock 48

Syntax Errors vs. Semantic Errors

January 13, 2009 Slides by Mark Hancock 49

January 13, 2009 Slides by Mark Hancock 50

By the end of this 15 minute section, you will
be able to distinguish between a syntax error
and a semantic error.

January 13, 2009 Slides by Mark Hancock 51

With a natural language (e.g., English), what is
the difference between syntax and semantics?

January 13, 2009 Slides by Mark Hancock 52

Syntax error in English:

– “I accidentally the whole class.”

Semantic error in English:

– “I’ve been alive for five light years.”

Syntax Error

• An error caused by incorrect use of the syntax
of the programming language

• Result:

– Compiled language?

– Interpreted language?

January 13, 2009 Slides by Mark Hancock 53

Syntax Error: Example

January 13, 2009 Slides by Mark Hancock 54

Semantic Error

• An error caused by code which may be
readable by the computer, but has incorrect
logic

• Result:

– Compiled language?

– Interpreted language?

January 13, 2009 Slides by Mark Hancock 55

Semantic Error: Example
Python
def addInts(a, b):

return a + b

x = addInts(10, 20)

print "x = %i\n" % x

y = addInts(200, "Hello")

C
int addInts(int a, int b)

{

return a + b;

}

int main()

{

int x;

int y;

x = addInts(10, 20);

printf("x = %d\n", x);

y = addInts(200,

"Hello");

}

January 13, 2009 Slides by Mark Hancock 56

Find the errors

a = [1, 2, 3, 4]

i = 0

while i < 4

i=i+1

print a[i]

January 13, 2009 Slides by Mark Hancock 57

One way to fix

a = [1, 2, 3, 4]

i = 0

while i < 4:

print a[i]

i=i+1

January 13, 2009 Slides by Mark Hancock 58

Lecture 01 Summary

• Administrivia

• Expectations

• Purpose of Programming

• Course Goals & Objectives

• Interpreters vs. Compilers

• Syntax Errors vs. Semantic Errors

January 13, 2009 59Slides by Mark Hancock

Next Class

• C/Java Syntax

January 13, 2009 Slides by Mark Hancock 60

