
Assignment 3: Tag Clouds
Weight: 15%
Due: Friday, March 20, 2009 at 11:59pm

Assignment Goals
The purpose of this assignment is to give you practical experience in the analysis, design, and

implementation of an object-oriented system.

Problem
In this assignment, you will read in a text document from a file and draw the corresponding tag cloud.

Input
Your program will take as input two files: a document, and a list of stop words. The document can

contain any list of English words, separated by whitespace of some kind (spaces, new lines, tabs, etc.).

Some of these words can (and will) be repeated. The stop words file will contain a list of non-repeated

lowercase words. The stop words are a list of words that will be ignored in your tag cloud.

The names of these files will be specified on the command line, along with the following parameters:

 (p) The smallest point size used to draw text to the screen

 (P) The largest point size used to draw text to the screen

 (c) The colour to use for words with the lowest frequency (1)

 (C) The colour to use for words with the highest frequency

 (h) The amount of horizontal space to add between words (in pixels)

 (v) The amount of vertical space to add between words (in pixels)

 (f) The minimum frequency of a word that is to be drawn (words with a smaller frequency will

not be drawn)

 (w) The width of the entire tag cloud

NOTE: the labels used in this list are only for making this assignment description easier to read. You

should consider using different variable names in your code.

Output
Your program will display a tag cloud of all of the words in the document that are also not in the stop list

and occur more than the minimum frequency (f). Each word should be drawn without overlapping any

other word. Words should be laid out from left to right with the specified amount of empty space (h)

between words until the width of the tag cloud (w) is reached. Once this boundary is reached, words

should be drawn on the next line from left to right with the specified amount of vertical spacing (v)

separating each line. NOTE: You are not required to check whether too many rows are drawn. Words in

each row should be drawn at the same baseline (i.e., using the same y-coordinate in quickdraw).

The size and colour of each word should be interpolated between the minimum (p or c) and maximum

(P or C) specified values using the word’s frequency and the maximum frequency for any word. A class

method in A3Helper has been provided to help with this interpolation. For example, if the minimum

colour is white (r=255, g=255, b=255), the maximum colour is blue (r=0, g=0, b=255), a word “hello” has

a frequency of 5, and the maximum frequency for any word in the document is 20, you would calculate

the green value of the colour to draw “hello” with as follows:

int green = A3Helper.interpolate(0, 255, 5, 20);

Example

Here is an example of the appropriate output for Edgar Allen Poe’s “The Raven” (raven.txt) as the

document and a short stop list (short-stopwords.txt) with the following parameters:

 Smallest point size = 12 points

 Largest point size = 72 points

 Min frequency colour = r: 255, b: 255, g: 255 (white)

 Max frequency colour = r: 0, b: 0, g: 255 (green)

 Horizontal space = 50 pixels

 Vertical space = 50 pixels

 Minimum frequency = 4

 Tag cloud width = 790 pixels

Support
While this may initially seem like a daunting task, I have provided some code to help you with this

assignment. You are also free to use the code that we wrote in class. There are two files of code to help

you with this assignment: Display.java and A3Helper.java.

A3Helper.java

This class provides three public class methods that you can use in your assignment:

 getStringBounds(String, int, String, String)

o This function takes three font parameters (name, size, and style) and a string parameter

and returns a bounding rectangle for the string.

 getFile(String)

o This function takes a filename and returns a list of strings.

 interpolate(float, float, int, int)

o This function interpolates size and colour values (as described above).

This class also contains a main method with some sample code for how to use the getFile function.

Display.java

This class provides an interface to the quickdraw program. There are two instance methods that are of

particular importance:

 Display()

o This constructor creates a quickdraw window that you can send commands to.

 writeCommand(String)

o This function sends a command to the quickdraw window.

This class also contains a main method with some sample code for how to use this class as well as the

A3Helper.getStringBounds method.

Expectations
For CPSC 217 and for assignments 1 and 2, you likely created your programs as a single file. All of your

variable declarations and all of your code went into these files. You learned about modules, but you

didn't have to create any yourself. At this point in CPSC 219, we are now creating much more modular

programs. Each public class in Java must be in its own file. For a simple program with four classes, this

now requires that you create four files and this requires that you now have to make decisions about

where to place code. Getting this right is an absolute priority for this assignment!

You are expected to make use of the online documentation for Java. You are welcome to make use of

any of the classes available in this specification. Of particular interest are the ArrayList, String, and

Rectangle classes. If any part of this documentation or anything in this assignment description is unclear,

or even if you just get stuck, I am EXPECTING you to come see me or the TA.

Evaluation
Your mark for each part will be calculated as follows:

 Excellent Satisfactory Unsatisfactory

Documentation (15 marks)
Your documentation is
effective, concise and
includes all of the
components listed below.

(10-14 marks)
Your documentation is missing
one or two of the components
below, you are overly verbose
in a few places, or it is difficult
to understand what you have
written for one or two
descriptions.

(0-9 marks)
Most of your
documentation is missing
the below components;
your comments are
extremely long and usually
difficult to understand.

Programs output
correct values

(15 marks)
Your program produces
correct output for every
possible input (according to
the specifications).

(10-14 marks)
Your program produces mostly
correct output, with the
exception of up to four types of
input.

(0-9 marks)
Your program produces
mostly incorrect output.
The range of 0-9 will
depend on how close the
output is to being correct.

Implementation (15-20 marks)
It is very easy to follow the
flow of your program and it
is clear why each step is
performed and each class
was included. You divide
your code across several
classes with methods of
relatively small size.

(10-14 marks)
The TA has some difficulty
understanding why you chose
the classes and methods that
you did, but is able to
eventually figure it out. Some
of your methods are long and
could be broken down into two
or more functions.

(0-9 marks)
The TA has a very difficult
time understanding your
implementation (or cannot
understand it at all). Most
of your methods are too
long and could be broken
down into two or more.

Class, method,
and variable
names

(15 marks)
The names you chose make
your code clear and easy to
read.

(10-14 marks)
Up to six names aren’t clear
(e.g., x, foo, bar, class A).

(0-9 marks)
More than six names aren’t
clear.

Demonstration (15 marks)
Your program works exactly
according to the
specification for all test
cases. You are also able to
clearly explain your code and
answer questions about the
effect of changing it.

(10—14 marks)
Your program works according
to the specification, with the
exception of up to three test
cases. You have some difficulty
explaining your code or require
some prompting from the TA to
be able to describe the effect of
changes to your code.

(0-9 marks)
Your program produces
incorrect output for most of
the test cases. You cannot
explain your code or cannot
answer questions about the
effect of changing it.

Analysis and
design

(15-20 marks)
Your class model has a
minimal number of classes
and makes your code clear
and concise.

(10-14 marks)
You use 3-5 classes that are
unnecessary, redundant, or in
some way complicate your
design.

(0-9 marks)
In more than five places,
you choose inappropriate
classes.

The demonstration must be completed within 1 week of the due date. The student must demo the code

which was submitted to the TA. The TA has the right to assign a mark as low as 0 as a final grade for the

whole assignment if he is not satisfied with the demonstration portion of the assignment. The TA may

deduct up to 5% from the assignment's final mark for errors in spelling and grammar.

Demonstration
Your TA will execute your program several times to ensure that it is behaving as specified above using a

variety of test documents (all under 500 KB in size).

Documentation
For each class, you should minimally document:

 your name;

 the purpose of the class;

 the date you started writing the class;

 each instance variable;

 each class variable;

For each method, you should minimally document:

 the purpose of the method;

 the input parameters;

 the output/return values; and the algorithm used if it is not obvious from the code.

Working Together
If you decide to work with someone from the class or to use resources that you found online or in a

book (besides the course textbooks), you must cite these sources. When handing in your assignment,

please specify who you worked with and list these sources. You will be required to demonstrate your

knowledge of how the code performs its task to the TA to get full marks on the assignment. If the TA

feels that you do not fully understand what you have written, he may decide to reduce your assignment

mark. An example question that the TA could ask would be “what would happen if I changed this line of

code to this?” (explains the change) or “why did you choose to include this class in your design?”

Handing in your assignment
For this assignment, email your programs to your TA on or before the due date. Be sure to include all

files with the .java extension (including those provided to you that you make use of) as well as a

description of how to run your program (i.e., which class contains your ‘main’ method). Make sure that

your email client program saves a copy of the email you send to your TA. In the event of email problems,

we need the header information from your original email to ensure that you submitted your assignment

on time.

