
Assignment 1: First C Programs
Weight: 5%
Due: Friday, February 6, 2009

Assignment Goals
The lectures so far have focused on the C programming language. We have covered conditional

statements, while loops, data types, arrays and strings. These are the basic components of imperative

programming that you learned in CPSC 217 using the python language. The goal of this assignment is to

help you to become proficient in using these concepts in the C programming language.

Part 1 (50%): Computing Basic Statistics for a List of Numbers

Problem
We need a program that will tell us some basic statistics about a list of non-zero floating-point numbers.

Specifically, we want to know the mean (or average), the minimum value, the maximum value, and the

standard deviation.

The standard deviation should be computed using the following formula:

Where,

 standard deviation

mean

 are the N numbers entered on the command line

The purpose of this assignment is to learn to program in C, not to understand mathematical equations.

Feel free to ask the instructor or the TA for help in understanding the meaning of the above equation.

Specification

Input

Your program must take a list of non-zero floating-point numbers as arguments on the command line. If

no arguments are provided, your program must print out a message that states how to use the program

and then terminate. If any of the numbers are zero or not numbers at all, an error message must be

printed and the program must terminate. Here are some examples,

 > ./statistics
Usage: ./statistics <list-of-numbers>

> ./statistics 0 1 4

‘0’ is not a valid number

> ./statistics three 5 hello

‘three’ is not a valid number

Output

Your program must print out the correct mean, minimum, maximum, and standard deviation values for

the list of numbers. For example,

> ./statistics 3.4 1.9 10.3 1.1

Mean: 4.18

Min: 1.10

Max: 10.30

Standard Deviation: 3.63

> ./statistics 4 5

Mean: 4.50

Min: 4.00

Max: 5.00

Standard Deviation: 0.50

> ./statistics -3.5 100.345 5

Mean: 33.95

Min: -3.50

Max: 100.35

Standard Deviation: 47.08

Demonstration of Part 1

You will be required to demonstrate to your TA that your program accurately performs the

computations outlined above. You will not be given the list of test numbers until demo time.

Hints

In order to complete this part of the assignment, you will need to know how to get input from the

command line arguments of a program. This is accomplished by adding arguments to your main function

as follows:

int main(int argc, char **argv)

{

…

}

argc will store the number of arguments and argv is the array containing the arguments (the first of

which will be the name of the program that is executed). The second parameter could be rewritten as

char *argv[].

You will also need to be able to translate strings into floating-point numbers. I recommend that you use

the function atoff or atof. These functions convert a character array into a float or double,

respectively.

Part 2 (50%): Big Mac Carbon Footprint

Problem
We need a program that will provide information about the carbon footprint of Big Macs. The dataset to

be used is the following:

Data collected from ManyEyes (http://manyeyes.alphaworks.ibm.com/manyeyes/).

Production Stage Energy Cost ($) CO2/Methane emissions (pounds)

Crop/feed production 0.27 1.5

Cow burping/flatulence 0.0 0.07

Transport 0.02 0.13

Milling 0.01 0.15

Baking 0.03 0.37

Milking/making cheese 0.01 0.12

Slaughtering/cutting 0.04 0.52

Grinding/freezing 0.005 0.06

Freeze-drying 0.002 0.03

Pickling 0.001 0.01

Frying 0.03 0.37

Storage 0.12 1.5

Specification
Your program must accept search criteria via a menu system. You should be able to search for all

production stages which match:

a) a string of characters within the name of the production stage;

b) a range of energy costs (from a specified minimum value to a specified maximum value); or

c) a range of carbon emissions (from a specified minimum value to a specified maximum value).

For example (user input is highlighted in bold):

> ./bigmac

Search on:

1. Production Stage

2. Energy Cost

3. Emissions

4. Exit

Enter your choice: 1

Stage contains: reez

Production Stage Energy Cost Emissions

Grinding/freezing 0.00 0.06

Freeze-drying 0.00 0.03

http://manyeyes.alphaworks.ibm.com/manyeyes/

Search on:

1. Production Stage

2. Energy Cost

3. Emissions

4. Exit

Enter your choice: 2

Enter minimum value: .1

Enter maximum value: .5

Production Stage Energy Cost Emissions

Crop/feed production 0.27 1.50

Storage 0.12 1.50

Search on:

1. Production Stage

2. Energy Cost

3. Emissions

4. Exit

Enter your choice: 3

Enter minimum value: .2

Enter maximum value: .9

Production Stage Energy Cost Emissions

Baking 0.03 0.37

Slaughtering/cutting 0.04 0.52

Frying 0.03 0.37

Search on:

1. Production Stage

2. Energy Cost

3. Emissions

4. Exit

Enter your choice: 4

>

Criteria

 The comparison performed on the production stage must be case sensitive. This constraint is

being added to simplify the assignment.

 A title line must be printed before displaying the matching rows (as seen in the examples). All of

the columns within the output must line up appropriately.

 In the menu, if a number other than 1-4 is entered, an error message must be printed.

 No other error-checking is required.

 Once a search has been completed, the menu must be reprinted. The only way to end the

program is to enter the number ‘4’ as your choice in the main menu.

Hint

A string function which would help the completion of this assignment is called strstr. This function

searches for the occurrence of one string within another string.

Demonstration of Part 2

Your TA will execute your program several times to ensure that it is behaving as specified above.

Python Solution to a Similar Assignment
A code listing for a similar assignment in a previous 217 class is posted on the website. This code

searches through a feline dataset and does not match the specification for this assignment. It is provided

as a source of hints as to how you might solve part 2 of this assignment.

Documentation
For your program, you should minimally document:

 your name;

 the purpose of the program;

 the date you started writing the program;

 any global variable use; and

 any use of structures.

For each function, you should minimally document:

 the purpose of the function;

 the input parameters;

 the output/return values; and

 the algorithm used if it is not obvious from the code.

Evaluation
Your mark for each part will be calculated as follows:

 Excellent Satisfactory Unsatisfactory

Documentation (15 marks)
Your documentation is
effective, concise and includes
all of the components listed
above.

(10-14 marks)
Your documentation is missing
one or two of the components
above, you are overly verbose
in a few places, or it is difficult
to understand what you have
written for one or two
descriptions.

(0-9 marks)
Most of your
documentation is missing
the above components;
your comments are
extremely long and usually
difficult to understand.

Programs
output correct
values

(15 marks)
Your program produces
correct output for every
possible input (according to
the specifications).

(10-14 marks)
Your program produces mostly
correct output, with the
exception of up to four types of
input.

(0-9 marks)
Your program produces
mostly incorrect output.
The range of 0-9 will
depend on how close the
output is to being correct.

Program
structure

(15-20 marks)
It is very easy to follow the
flow of your program and it is
clear why each step is
performed. You use several
functions to avoid repeating
code. Each function is a small
number of lines of code and
represents a reusable bit of
code.

(10-14 marks)
The TA has some difficulty
understanding the flow of your
program, but is able to
eventually figure it out. Some
of your functions are long and
could be broken down into two
or more functions.

(0-9 marks)
The TA has a very difficult
time understanding the
flow of your program (or
cannot at all understand it).
Most of your functions are
too long and could be
broken down into two or
more.

Variable names (15 marks)
Every variable has a name that
makes your code clear and
easy to read.

(10-14 marks)
Up to six variables have names
that aren’t clear (e.g., x, foo,
bar).

(0-9 marks)
More than six variables
have names that aren’t
clear.

Demonstration (15 marks)
Your program works exactly
according to the specification
for all test cases. You are also
able to clearly explain your
code and answer questions
about the effect of changing it.

(10—14 marks)
Your program works according
to the specification, with the
exception of up to three test
cases. You have some difficulty
explaining your code or require
some prompting from the TA to
be able to describe the effect
of changes to your code.

(0-9 marks)
Your program produces
incorrect output for most
of the test cases. You
cannot explain your code
or cannot answer questions
about the effect of
changing it.

Analysis and
design

(15-20 marks)
Your choice of variables and
statements make your
solution clear.

(10-14 marks)
In up to six places, you choose
a variable type or statement
that is inappropriate.

(0-9 marks)
In more than six places,
you choose variables and
statements that are
inappropriate.

The demonstration must be completed within 1 week of the due date. The student must demo the code

which was submitted to the TA. The TA has the right to assign a mark as low as 0 as a final grade for the

whole assignment if he is not satisfied with the demonstration portion of the assignment. The TA may

deduct up to 5% from the assignment's final mark for errors in spelling and grammar.

Working Together
If you decide to work with someone from the class or to use resources that you found online or in a

book (besides the course textbooks), you must cite these sources. When handing in your assignment,

please specify who you worked with and list these sources. You will be required to demonstrate your

knowledge of how the code performs its task to the TA to get full marks on the assignment. If the TA

feels that you do not fully understand what you have written, he may decide to reduce your assignment

mark. An example question that the TA could ask would be “what would happen if I changed this line of

code to this” (explains the change).

Handing in your assignment
For this assignment, email your programs to your TA on or before the due date. Make sure that your

email client program saves a copy of the email you send to your TA. In the event of email problems, we

need the header information from your original email to ensure that you submitted your assignment on

time.

